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RESUMO

Esse trabalho visa estudar o funcionamento de um motor a jato Ramjet através de um modelo
idealizado considerando a associa¢do de regimes de escoamentos conhecidos: Ondas de Cho-
que Obliquas, Expansdo de Prandtl-Meyer, Escoamento de Rayleigh e um Bocal Divergente. A
partir desse modelo, analisar algumas caracteristicas como impulso gerado, rendimento entre

outras variaveis, de acordo com a velocidade de entrada do escoamento.

Palavras-chave: Escoamento Compressivel. Escoamento Supersonico. Ramjets. Expansdo de

Prandtl-Meyer. Escoamento de Rayleigh. Bocal Divergente.



ABSTRACT

This paper studies the operation a Ramjet through an idealized model that considers the associ-
ation of known flows: Oblique shockwaves, Prandtl-Meyer expansion fans, Rayleigh flow and
divergent nozzle. This model will analyze some features as generated thrust, efficiency and
other variables, according to the input airspeed.

Keywords: Compressible Flow. Supersonic Flow. Ramjets. Oblique Shockwaves. Prandtl-
Meyer Expansion Theory. Rayleigh Flow. Divergent Nozzle.
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1 INTRODUCAO

O Ramjet ¢ um modelo de motor a jato criado para trabalhar em escoamento supersonico.
Apesar de haver registros anteriores, o seu desenvolvimento intensivo comecou nos primordios
da Segunda Guerra Mundial, com o objetivo de melhorar o alcance de misseis e artilharia in-
tercontinental. Hoje, o ramjet € largamente pesquisado e tem algumas aplicagdes em misseis,
avioes de combate (por exemplo o Lockheed SR-71 Blackbird da Figura 1) e avides nao tripu-
lados (VANT).

Figura 1 — Lockheed SR-71 Blackbird

Fonte: MigFlug, 2016.



2 REVISAO BIBLIOGRAFICA

2.1 Funcionamento do Ramjet

Diferente dos motores a jato convencionais no mercado, que trabalham no regime subsonico,
0 motor Ramjet ndo possui partes mdveis, pois a pressdo do ar na entrada € suficiente para
comprimi-lo. Esse motor constitui essencialmente de 3 partes: admissdo de ar, cimara de com-
bustdo e um bocal e por trabalhar exclusivamente em escoamento supersdnico, normalmente é

associado a um motor a jato convencional, para ser aplicado na regido de regime subsonico.

ENTRADA VARIAVEL BOCAL VARIAVEL

NUMERO DE MACH ALTO

Figura 2 — Associagdao Motor Convencional e Ramjet

Fonte: Aeroflap, 2016.

2.1.1 Admissao de Ar

Na admissao de ar, com a auséncia do conjunto compressor/turbina, o aumento da pressao
do ar ocorre devido a formagdo de uma onda de choque obliqua na entrada de ar. Em seguida,
o ar aquecido pela onda de choque, € acelerado devido a formacdo de ondas de expansao de

Prandtl-Meyer, direcionando o ar para a cdmara de combustao.

2.1.2 Combustdo de Ar e Bocal Convergente Divergente

O ar segue pela camara de combustdo onde formard uma mistura com o combustivel in-
jetado e ocorrerd a queima. Por fim, os gases residuais da queima serdo acelerados quando
transportados através do bocal convergente-divergente. A velocidade de saida dos gases assim
como varidveis qualitativas do modelo (rendimento, impulso gerado, exergia entre outros) desse
processo, sdo fatores a serem estudados de acordo com as condi¢des iniciais do ar de entrada

adotados ao modelo, objetivo a ser desenvolvido ao longo desse trabalho.
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2.2 Escoamento Compressivel e Supersonico

Em escoamentos, quando trabalhamos com fluidos ou gases em velocidades proximas a
velocidade de propagacdo da onda no meio (também nomeado como velocidade do som no
meio), estes se comportam como fluidos compressiveis, onde pequenas perturbacdes na pressao
do meio causam variagdes significativas na densidade do fluido ao longo do escoamento. Esse
fato € essencial para estudo dos escoamentos a velocidades supersonicas, onde a velocidade
do fluido é maior do que a velocidade do som. Nos topicos a seguir, serdo relembrados al-
guns conceitos e equacdes relevantes para a modelagem posterior do funcionamento do Ramjet.
Para isso, iremos adotar algumas hipéteses considerando os regimes de escoamento que serao

tratados por esse trabalho:

e Escoamento Unidimensional;

Regime Permanente;

e Ar comporta-se como gas perfeito;

Variacdo de energia potencial desprezivel;

e Escoamento sem atrito.

2.2.1 Velocidade de Propagacdo da Onda no Meio

Define-se a velocidade de propagacdo da onda no meio como sendo a variac¢ao infinitesimal
da pressao pela densidade para um processo isentrépico, pois como trata-se de um processo
infinitesimal pode ser considerado como adidbatico e reversivel. A férmula € apresenta na

equacao 2.1:

ap

3" 2.1)

a=(

No caso dos gases perfeitos, temos que estda velocidade depende apenas da temperatura do

g4s no escoamento, conforme mostrado na equagdo 2.2:

a=VkRT (2.2)

Onde k € a razdo entre os calores especifico, R € a constante dos gases paraoare T € a

temperatura do ar.
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2.2.2 Numero de Mach

Define-se o nimero de Mach como a relacdo entre a velocidade do ar com a velocidade do

som:

M = v (2.3)
a

Onde V € a velocidade do ar e a € a velocidade do som através do ar. Percebe-se que o
nimero de Mach € calculado localmente, ou seja, o nimero de Mach depende das condicoes
de um mesmo ponto do sistema. Definido o valor de M na equacdo 2.3, pode-se classificar os

diferentes regimes de escoamento:
e Velocidade Subsonica: M < 1;
e Velocidade Sonica: M = 1;

e Velocidade Supersonica: M > 1.

223 Angulo de Mach

Segundo ZUCKER (2002), quando analisamos as frentes de onda emitida por um ponto,
cuja velocidade da perturbacdo é maior que a velocidade do som, tem-se que as posi¢oes
das frentes de onda a cada instante de tempo formam um cone, sendo no vértice localizado

a perturbagdo. Essa forma é conhecida como Cone de Mach.

Cone de Mach

Zona de Siléncio

Ondaemt=2

Ondaemt=1
Ondaemt=0

Figura 3 — Angulo de Mach

Fonte: ZUCKER, 2002.

O angulo de abertura das frentes de onda, é chamado de angulo de Mach e depende exclu-

sivamente do Nimero de Mach da perturbacdo, conforme a equagdo 2.4 a seguir:

w= arcsin<Al4> (2.4)
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2.2.4 Estado de Estagnacao

O estado de estagnacdo € um estado de referéncia onde o fluido € levado ao ponto de re-
pouso (V = 0), sem nenhuma troca de energia e sem perdas durante o escoamento, ou seja,
através de um processo isentropico. Segundo BORGNAKKE (2009), a partir da primeira lei
da termodinamica aplicada a volume de controle, conforme a equacdo 2.5, e da equacio para a

entalpia total na equag@o 2.6, em um processo isoentropico qualquer:

q+hore =W+ o s (2.5)
V2

Temos entdo que a variacdo de entalpia entre um ponto qualquer do processo e o ponto de
estagnacgao € representada pela equacdo 2.7 a seguir:
V2

ho=h-+ 5 2.7)

Além da entalpia, no estado de estagnacdo podemos também definir outras propriedades
importantes como temperatura 7, densidade pg, pressdo pg e entropia sg, a partir de relacoes

conhecidas da termodinamica para os gases ideais, conforme mostrado nas equagdes de 2.8 a
2.11:

V2
To=T+—— 2.8
0 +2Cp (2.8)
Po
_ P 2.9
Po RT, (2.9)
V2
po=p+2- (2.10)

Po
—)
p

T
So— 5= cpln(%’) — RIn( (2.11)

2.2.5 Equagdes dos Gases Perfeitos em funcao do Nimero de Mach

Como definido nas hipéteses, que o ar se comporta como um gdas perfeito, vamos definir
algumas equacdes em fungio do nimero de Mach. Primeiramente tiramos uma relagio de V2

com M e k, a partir das equagdes 2.2 e 2.3:

V% = M*kRT (2.12)
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Aplicando a equacdo 2.12 a equagado da continuidade, definida na equacgdo 2.12,
i = pAV (2.13)

Obtemos uma equacgdo para a vazao massica para o escoamento supersonico, conforme a seguir:

k
1= pAM\[ - (2.14)

Aplicando a mesma equagdo 2.12 na equagdo 2.7 da entalpia de estagnagdo, com o auxilio de

algumas equagdes conhecidas da termodinamica,

h=C,T (2.15)
kR
C,=—— 2.16
P =R 1 (2.16)
Obtemos também as equacgdes para a entalpia e temperatura de estagnacao em fungdo de M:
k—1)M?
hO:h(l—k%) (2.17)
(k—1)M?
TO:T(1+T) (2.18)
Por fim, como o estado de estagnacdo € um processo isentropico, a partir da relacao para
processos:
T;
o _ (Joyiky (2.19)
)4 T
Obtemos a equacao 2.19 a seguir:
k—1)M? &
po=p(1+ E 1) (2.20)

2.2.6 Estado Critico

E o estado termodinimico em um processo particular onde o fluido estudado apresentasse
o numero de Mach 1 (M*). Assim como o ponto de estagnacio, cada ponto do escoamento
tem um estado critico, e este processo também € definido que ocorra de forma adiabatica e
reversivel, ou seja, processo isentréprico. Tanto o estado de estagnacdo como o estado critico
sdo referéncias importantes para o estudo de escoamentos compressiveis, pois existem tabelas
denominadas tabelas isentropicas, onde sdo definidos valores das propriedades termodinamicas
em relacdo a esses estados para diferentes valores de razdo k com a variacdo do nimero de

Mach, auxiliando nos célculos dos estados entre dois pontos quaisquer.



3 Desenvolvimento do Trabalho

O objetivo do trabalho € modelar no MATLAB o funcionamento de um Ramjet através de
um modelo idealizado. Relembrado os conceitos fundamentais para o estudo de escoamentos
compressiveis, iremos desenvolver os conceitos e modelar cada um dos regimes de escoamento

conhecidos que compdem o funcionamento desse motor a jato:
e Ondas de Choques Obliquas;
e Escoamento através de Area Variavel;
e Expansdo de Prandtl-Meyer;
e Escoamento de Rayleigh;
e Bocal Divergente.

Estudando de inicio, os modelos separadamente nas condi¢des de escoamento usuais para
motores a jato supersonico, e posteriormente associar os 4 regimes, de forma a aproximar-se do
funcionamento de um Ramjet, onde os dados de saida de um caso especifico serd de entrada em

outro trecho do modelo, conforme mostrado na figura 4.

Dados de Og;]j as de _ Area
Entrada ?que Variavel
Obliquas
v
Prandtl
Meyer
Dados de Bocal Ravieiah |«
Saida Divergente aylelg h

Figura 4 — Diagrama de funcionamento do modelo

Partindo desse modelo, vamos analisar parametros caracteristicos para diferentes velocida-
des no regime supersonico e determinar o empuxo especifico além dos rendimentos de Carnot

correspondente e real do Ramjet.



4 Ondas de Choques Obliquas

4.1 Base Tedrica

Segundo ANDERSON (2002), a onda de choque obliqua € o caso mais geral para o estudo
desse fendmeno em escoamentos supersdnicos, pois considera-se mais de uma componente
de velocidade atravessando a onda de choque. Para o caso bidimensional, considerando um
escoamento supersonico horizontal, ou seja M,, > 1 e M), = 0, a formagado da onda de choque
ocorre quando o escoamento passa por um aclive, defletindo de um angulo 6 na direcao do
mesmo. Quando o escoamento atravessa a onda choque, t€ém-se um decréscimo no nimero de

Mach e um aumento nas propriedades termodinamicas do ar (densidade, pressao e temperatura).

@

<M,

Figura 5 — Onda de Choque Obliqua

Fonte: ANDERSON, 2002.

4.2 Relacoes da Onda de Choque

A onda de choque obliqua forma um angulo de onda B com o referencial horizontal do
escoamento. Para a andlise das condi¢des do escoamento antes e depois da onda de choque,
deve-se decompor as velocidades em componentes normais e tangenciais a onda, e assim utilizar
as relacOes conhecidas para ondas de choque normais. Para que sejam validas essas relacoes,
temos como condi¢do que a componente tangencial de velocidade se conserve ao atravessar a

onda de choque obliqua.
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Figura 6 — Decomposicao das Velocidades

Fonte: ANDERSON, 2002.

Dessa forma, pode-se utilizar as equagdes 4.1 a 4.4 para determinar as condi¢des do escoa-

mento apds o choque, indicadas a seguir:

P2 (k+ l)M,%]

= M 4.1

p1 (k—1)MZ +2 1)

P2 2k

o :1+—k+1(1\/1,%1 —1) (4.2)

M2+ 2

M: = AL 4.3
" %Mrzll —1 @

L_pp (4.4)

i pip2 '

Onde os nimeros de Mach M| e M, podem ser determinados a partir de suas componentes

normais, sabendo os angulos 0 e 3, conforme as equagdes 4.5 e 4.6:

M,, = M; sin(B) (4.5)
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My— M
2T cos(B—0)

Além dessas equagdes, uma relagdo importante para o desenvolver do modelo e a simulacao

(4.6)

na secdo a seguir, onde variando a velocidade de entrada M e o angulo de deflexdo 0 consegue-
se determinar o angulo de choque f. Essa rela¢do é conhecida como relagdo de 6 — 8 — M, e é
representada na equagao 4.7:

M?sin®(B) — 1
M3 (k+cos(2B)) +2

tan(6) = 2cot(B)] ] 4.7)

4.3 Modelo e Simulagdes

4.3.1 Condigdes Iniciais do Ar

Para determinar as condi¢des iniciais do ar, foi usado como premissa que o Ramjet traba-

lharia nas condi¢des do padrao internacional de voo. Dessa forma, temos a principio que:
e Altitude de cruzeiro de 40 mil pés = 12192 m;
e Temperatura média de cruzeiro 7, = —55 °C (218,15 K);

A partir da altitude e temperatura média, consegue-se determinar a pressao e a densidade do
ar nas condi¢des de voo. Sabendo que a pressao atmosférica cai conforme se aumenta a altitude,
utilizando alguns conceitos basicos de termodindmica, temos como determinar uma pressao de

Cruzeiro p.r,, da seguinte forma:

Perie = prexpl ) (4.8)
Onde adotaram-se os seguintes valores para as constantes:
e Pressao a nivel do mar p; = 101,325 kPa;
e Gravidade g = 9,81 m/s?;
e Constante dos gases para o ar R = 287 J/kgK

Por fim, para se determinar a densidade do ar nas mesmas condig¢des, utilizou-se a equacao

4.9, para os gases ideais:

pCruZ
= 4.9
pP1 RT, (4.9)

Como resultado para pressdo e densidade na altitude padrdo de cruzeiro, teve-se os seguintes

valores:
® poruz =15 kPa;

e p; =0,239 kg/m?;
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4.3.2 Simulacao

Definida todas as condi¢des iniciais necessdrias para o escoamento, o proximo passo € si-
mular qual seria o valor do dngulo de deflexdo 6, variando o angulo da onda de choque 3 a

partir da equagao 4.10, uma forma alternativa para a equagio 4.7 para um 3 varidvel:

M?sin?(B) — 1
M3 (k+cos(2)) +2

6 = arctan(2cot(f)| 1) (4.10)

Essa equacdo 4.10 foi simulada em um programa simples de MATLAB, apresentando os

resultados encontrados no tépico a seguir.

4.3.3 Resultados

Os resultados da simulacdo foram obtidos, variando o nimero de Mach M| de 2 a 4, e
com isso foi simulado variando gradativamente o 8, formando uma curva onde o dngulo 0
varia até o chamado angulo de deflexdo maximo 6,,,,. Para valores onde 6 > 0,,,,, tem-se o
desprendimento da onda de choque com o angulo de deflexao, caso que ndo serd abordado nesse
trabalho.

Calculado o dngulo de choque B, foram definidas todas as condi¢des apds a onda de acordo

com a variagdo do mesmo, valores esses importantes para as proximas simulagdes.

Relagaao theta-beta-i
a0 , ! =

[y}
m
i

(]
M

Angulo de Chogue (%)
o
=
1

1| T .............. » ............. .............

o] .............. e ik T .............. ...............

40
10

1
) 25
Angulo de Deflexdo ()

Figura 7 — Relagio 0--M
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Angulo de Chogue » Densidade

Densidade {kg'm?)

i 1 i !
40 45 50 55 B0 B5 70 75 a0
Angulo de Chogue (7

Angulo de Chogue » Presséo

40 45 a0 25 60 B5 70 78 a0
Angulo de Chogue (7)

Figura 8 — Resultados para Ondas de Choque 1
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Engulo de Chogue ¥ Temperatura

400

il

700 -

600

a00

Termperatura ()

00 i 1 1 i !
40 45 a0 55 G0 =] 70
Angulo de Chogue (7
Engulo de Chogue % Namero de Mach M,
1.4 T T T ! T
e M =2 ; :
12H - .M1=3§ :
5[l z
= : :
fai] £
- :
= :
& |
= f
40 45 a0 55 60 B5 70

fa.ngulu de Chaogue (%)

Figura 9 — Resultados para Ondas de Choque 1

4.3.4 \Verificacao

Cada uma das etapas do modelo serd verificada a partir de exemplos especificos para cada

area desenvolvida, exemplos esses retirados das referéncias bibliogréificas onde ja sdo conheci-

das as solucdes ou as solugdes foram feitas manualmente.No caso da Onda de Choque Obliqua

e Expansdo de Prandtl-Meyer, serd a resolucdo de um escoamento ao redor de um aerofélio

segundo ZUCKER (2002). A descri¢ao do exercicio € dada a seguir:

e Sejaum aerdlio segundo a figura 10, com angulo de ataque @ = 5° e escoamento ao longe

igual a M| = 1.5. Sabendo que a temperatura nesta altitude € 7} = —55°C e pressao de

p1 = 55.2kPa, deve ser calculado as condi¢des do escoamento apds a onda de choque,

considerando que o fldido € ar e que o angulo de declive § < 6,4,.
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Figura 10 — Escoamento ao redor de um aerofo6lio.

Solugdo: Sabendo que o = 5° e o angulo de abertura da geometria do aerofdlio é € = 10°,
define-se o dngulo de aclive como 0 = € — a = 5°. Com o dngulo de declive e nimero de Mach
do escoamento, através das curvas de onda de choque obliqua, define-se o angulo de choque

como 6 = 48°, para a solu¢ao onde 6 < 6,,,,. A partir desses dados, consegue-se determinar
todas as condigdes antes e depois do escoamento:

M, =M;sin@ = 1.5sin48 =1.12

Tabelas de Onda de Choque Normal: M, =0.9 e Z—i =1.2838

e Mo 09
2_cos(9—5)_cos(48—5)

=1.23

2= p1 22 =70.9kPa
P1

Solugdo Numérica: Os resultados obtidos do modelo estdo na tabela 1 a seguir:

Resultados
M; | 1.5000
p1 | 55.2000

1) 5.0000

0 | 47.8915

M, | 1.1128
M,> | 0.9019
M, | 1.2311
Z—f 1.2781
p2 | 70.5511

Tabela 1 — Solucao para Exemplo 1 - Modelo
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5 Escoamento através de Area Variavel

5.1 Base Teodrica

Este topico visa estudar como o escoamento compressivel se comporta ao longo de seu

trajeto, quando € submetido a uma variagdo de drea em um escoamento sem perdas, conforme
a figura 11 a seguir.

[ e

Figura 11 — Escoamento através de uma area variavel.

PIMENTA, 1998.

A relacdo da variagdo de drea com os niimeros de Mach de entrada e saida de um dado
escoamento hipotético, pode ser calculada pela equacao 5.1:

k=142
& — %[H—T%]z(kktll
Ay M l—l-%Ml2

S1—52

Je R (5.1

Lembrando que nao hd perdas durante o escoamento, ou seja ele € isoentrépico, tem se que o

fator referente a variacdo de entropia na equacao 5.1 serd igual a 1, obtendo a equacdo 5.2 a
seguir:

k=L pg2
Lt 7 Mty (5.2)

AZ_MI[
A M, lJr%Ml2

5.2 Modelo e Simulacdo

Para o modelo do Ramjet, adotou-se um valor para a relacdo de dreas de saida pela de entrada

como 1.5. Sabendo a relacdo de areas e utilizando do conceito de estado critico, obteve-se a
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equacgdo 5.3, onde por meio de interpolacdes nas tabelas isoentrdpicas, determina-se todas as

condicdes do escoamento apds a variacio de drea.

Ay Ay Ay
A* A A

(5.3)

5.3 Resultados

Densidade (kg'm?)

Engulo de Chogue ¥ Densidade

0.35

03

0.25

=
[N

0.15

i 1 i I i
40 45 50 55 B0 B5 70 75 a0
Angulo de Chogue (7

Figura 12 — Angulo de Choque x Densidade
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Termperatura ()

Pressao (kPa)

Angulo de Chogue x Presséo

40 45 a0 25 60 B5 70 78 a0
Angulo de Chogue (7)

Figura 13 — Angulo de Choque x Pressio

Engulo de Chogue x Temperatura
600 T T ,

— i), =12

540

a00

450
400
340
300
240

200

150 | I 1 i I 1
40 45 a0 55 B0 Ba 70 Fis alll
Angulo de Chogue (%)

Figura 14 — Angulo de Choque x Temperatura
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ﬁxnguln de Chogue x Nimero de Mach M,

2 I T I T ; I 3
_M1 =2
-M1 =3
e L, .......... ........... ........... ........... .......... .........
=
O
=
2
= : : : : : : :
1_9_ .......... .......... . .......... _. .......... ........... ........... . ........
185 ] 1 1 i I ]
40 45 a0 o5 B0 B5 70

fa.ngulu de Chaogue (%)

Figura 15 — Angulo de Choque x Nimero de Mach M,

5.3.1 Verificacao

Para o proximo exemplo, o exercicio abordado servira tanto para o exemplo de area varidvel,

como também para o bocal divergente, utilizando os resultados obtidos na verificagdo para o
modelo de bocal:

e Oxigénio é transportado através de um difusor com velocidade V; = 195 m/s, como a
figura 11, onde as dreas de entrada e saida sdo respectivamente A; = 0.56 m? e A, =
0.407 m? e temperatura e pressio de 7} = 416 K e p; = 0.2 MPa. Deve ser calculado a

densidade do oxigénio p; e todas as propriedades apds a passagem pelo difusor.

Solugdo: A partir dos dados e conhecidas as equagdes para fluidos compressiveis, calcula-se
as propriedades antes e depois do difusor:

ay =v/kRT; =/ (1.4)(287)(416) = 408.8m/s

Vi 195
My =L =22 _047
L™ 4~ 4088
20000 k

"~ RTy  (287)(416) m3
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1.4—1
(0.47)%) = 434.4K

k—1
T, =Ti(1 +TM12) —416(1 +

k—1_ 5 & 14—1
Pol =p1[1+—2 MAeT =0.2[1+

4

(0.47)2]T5°T = 0.23MPa

Tabela para escoamento com k = 1.4: % = 1.3801, TTLII =1.0423 ¢ % =1.1561

Ay AyA,  0.407
22 _ 2200 P 1.3801) = 1.
Ax A Ax 0.56 (|3801) = 1.003

Interpolando na tabela para escoamento com k = 1.4 com o j“—i: M, =1.1, %2 =1242e
P2
oy = 2.1352
T Ty Tor 1
h=———T=—=(1)(1.0423)(416) = 349K
2= Ty 1 D 1222l )(416)
P2 Po2 Pol 1
p=———p1 = 1)(1.1561)(0.2) = 0.11MPa
pr=PEPRP e (D(11561)(02)

Solugdo Numérica: Os resultados obtidos do modelo estdo na tabela 2 a seguir:

Resultados
M [ 0.4770
p1 | 0.2000
i | 416.0000
A; | 0.5600
Ay | 04070
2] 07268

1
T,1 | 4349273
Pol 0.2337
L] 1.3867
T [ 1.0455

1
el 71,1685
D1
2 | 1.0078
M, | 1.0993
To [ 12417

2
P 12,1334
P2
T, | 350.2682
p> | 0.1095

Tabela 2 — Solucao para Exemplo 2 - Modelo
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6 Expansio de Prandtl-Meyer

6.1 Base Teodrica

As ondas de expansdo de Prandtl-Meyer ou Expansdes de Prandt-Meyer, sdo o caso contrario
das ondas de choque, onde seu objetivo principal seja acelerar o fluido devido a presenca de um
declive no percorrer do escoamento. Esse processo ocorre de forma continua e suave, onde
conforme o escoamento passa pelo canto com declive, vao se formando sucessivas e continuas

ondas de Mach, caracterizando o processo como isentropico.

Figura 16 — Expansdo de Prandtl-Meyer

Fonte: ANDERSON, 2002.

6.2 Equacionamento e Func¢ao de Prandtl

Do ANDERSON (2002), sabe-se que com as condi¢des precedentes do escoamento M,
T\ e p; junto com o angulo de declive 8, (para o desenvolvimento da simulagdo foi nome-
ado como A), é possivel calcular as condi¢des apds o processo de expansdo do escoamento
(M, T, e py). Partindo de variagdes infinitesimais do angulo de declive d@ e utilizando de

relacdes geométricas, pode-se demonstrar que a variagdo do angulo de declive depende apenas
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da variacdo da velocidade do escoamento, conforme indicado na equacido 6.1 a seguir:

dGz\/Mz—ldVV 6.1

Integrando a equac@o de ambos os lados e com mais algumas manipulagdes e substitui¢oes
matematicas, obtém-se a conhecida Funcdo de Prandtl-Meyer, indicada pela letra grega v na

equacgdo 6.2:

V(M) =,/ %arctan 1:%1(M2 —1) —arctan /M2 — 1 (6.2)

Onde pode-se determinar o angulo de declive 6, pela diferenca do valor da fungdo de

Prandtl-Meyer antes e apds o declive, conforme a equagdo 6.3 a seguir:

6, = V(Mz) — V(Ml) (6.3)

Partindo das condi¢des do estado precedente a expansdo (estado 1), junto com as equacdes 6.2
e 6.3 e sabendo que o processo de expansao € isentrdpico, determina-se as condi¢des apos a

expansao (estado 2) a partir das relacdes fundamentais para fluidos compressiveis.

6.3 Modelo e Simulacdes

6.3.1 Modelo

Para o modelo da onda de expansdo, serd andlisado como varia a nimero de Mach e as
condi¢oes de saida do escoamento de acordo com diferentes combinag¢des de 8 e A como de-

monstrado na figura 17, ndo necessariamente sendo iguais os valores dos angulos.

Figura 17 — Modelagem do Prandtl-Meyer
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Considerando as condi¢des apds a onda de choque como estado 1, e as condi¢des de escoa-

mento apos as ondas de expansao de estado 2, pode-se modelar segundo a equagado 6.4 a seguir:

v(Mp) =A+v(My) (6.4)

Estudando as diferentes combinac¢des de angulos para a modelagem, consegue-se avaliar a
velocidade do escoamento de entrada para a camara de combustao, que serd tratado no capitulo

a seguir.

6.3.2 Simulacdo

Para essa simulacdo, calcula-se basicamente a fun¢cao de Prandtl-Meyer com a equagio 6.2
no escoamento apds a onda de choque (estado 1), soma-se com o angulo de declive A para
determinar a funcdo de Prandtl-Meyer de saida (estado 2).

Com isso, interpola-se os resultados com uma tabela de Niimero de Mach M x funcdo de
Prandtl-Meyer v, montada com o auxilio da equacdo 6.2, para se determinar entdo o nimero
de Mach de saida M,. A partir da velocidade de saida, determinam-se todas as condicdes do

escoamento partindo do pressuposto que as ondas de expansao sao isentropicas.

6.3.3 Resultados

Angulo de Declive ¥ Mimero de Mach M, (Entrada M, =2)

12 ! ; ! ! !
ME - theta= 146 |- R .............
-theta = 16° : ;
10 ke theta=180 | .............. S =,
. theta = 20° : :
theta = thetama)c =2.9705°

Mimero de Mach
|
i

” : : :
20 30 40 50 B0 70 80
Angulo de Declive (%)

Figura 18 — Angulo de Declive x Ntmero de Mach M,, M; =2
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Angulo de Declive ¥ Mimero de Mach M, (Entrada M, = 3)

22 ! ! ! ! ]
theta = 22° :

o1 3| ol B L

1mE-- theta =28 L s 4
theta = 31° : :

o) Bt theta = thmamax = 3407162 |.....; .............. ............ g

Mimero de Mach

2 : '
20 30 40 50 B0 70 80
Angulo de Declive (%)

Figura 19 — Angulo de Declive x Niimero de Mach My, M| = 3

Angulo de Declive » Mimero de Mach M, (Entrada M, = 4]

35 T T ! ! !
theta = 27 : :
30 .......... theta:SDO .............. \ .............
theta =33 ] :
gk theta=36 | i
rn -_ (=]
theta = thetamax =38.7737

Marmero de Mach

Angulo de Declive (%)

Figura 20 — Angulo de Declive x Ntmero de Mach M, M| = 4
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Pressao (kPa)

Angulo de Declive ¥ Pressdn (Entrada M, =2)

3 T T T T T
: : theta = 14°
: : “theta = 167
il . N .............. ............. thetg = 15 H
i : theta = 20°
theta = thetamax =2 5705
2 T L TR e~y T g T e e o T T A
s ;
o ] : : ¢ :
o i 3 : : :
2 15 F NN e e i e e Ensprnawa R -
in WA b : i : ¢
o - i
bl &
o ;
o R, . VR, St e e R R R R i e e =
05 .............. ........ - e T e I e S e N N S R
0 i | 1 ;i "
20 30 40 50 B0 70 a0

Angulo de Declive (%)

Figura 21 — Angulo de Declive x Pressdo, M, = 2

Angulo de Declive x Pressdo (Entrada M, =3)

1.8 T T T T T
: : theta = 222
ol B, (RN .............. ............ . -theta = 252 L
: theta = 25°
Fghibeio N o ............ theta = 31° H
: theta = theta = 3407187

0 L - :
20 30 0 a0 60 70 80
Angulo de Declive (%)

Figura 22 — Angulo de Declive x Pressdo, M| = 3
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Angulo de Declive ¥ Pressdn (Entrada M, =4)

25 T T T T T
: : theta = 27°
“theta = 30°
theta = 33
2 Lol s miiedins i el i g e i s ‘theta - 360 (
theta = thetamax =38.7737°

0 i L : i
20 30 40 50 B0 70 80
Angulo de Declive (%)

Figura 23 — Angulo de Declive x Pressio, M| = 4

Angulo de Declive x Temperatura (Entrada M, =2)

180 T T T T T
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“theta = 167
theta = 187
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= : : o
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Figura 24 — Angulo de Declive x Temperatura, M; = 2
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Angulo de Declive ¥ Ternperatura (Entrada M, =3)
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Figura 25 — Angulo de Declive x Temperatura, M| = 3

250

Angulo de Declive x Temperatura (Entrada M, =4)

: theta = 27°
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theta = 33°
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Figura 26 — Angulo de Declive x Temperatura, M; = 4
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Densidade (kg/m®

Densidade (kg/m®

Angulo de Declive % Dengidade (Entrada M, =2)
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Figura 27 — Angulo de Declive x Densidade, M| = 2
Angulo de Declive x Densidade (Entrada M, =3)
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Figura 28 — Angulo de Declive x Densidade, M| = 3
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Angulo de Declive % Dengidade (Entrada M, = 4)
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Figura 29 — Angulo de Declive x Densidade, M| = 4

Importante ressaltar que para os proximos modelos, serd levado em conta as variagdes de
propriedaes termodindmicas de acordo com a variagdo do A do Prandtl-Meyer, dessa forma

levando em consideracdo as diferentes combinagdes de geometria para o modelo do Ramjet.

6.3.4 \Verificacao

O exemplo tratado para a Expansdo de Prandtl-Meyer € a continuidade do exemplo do ae-
rofélio segundo ZUCKER (2002), descrito a seguir:

e Considerando o aerofdlio segundo a figura 10, agora deve ser calculado o nimero de

Mach M3 apés a expansao de Prandtl-Meyer.

Solugdo: Através das tabelas de Prandtl-Meyer define-se o valor de v, e assim com a
diferenga de angulatura ou angulo de declive Av = 20°, é possivel determinar as condigdes

do escoamento na regido 3:
Das Tabelas de Prandtl-Meyer: vy =4.31173

vz =Av+v, =20+4.31173 =24.31173

Com esse resultado, interpolando nas Tabelas de Prandtl-Meyer: M3 = 1.9257

Solugdo Numérica: Os resultados obtidos do modelo estdo na tabela 3 a seguir:
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Resultados
M, | 1.2311
nuy | 4.3396
Av | 20.0000
nuz | 24.3396
Mz | 1.9267

Tabela 3 — Solu¢ao para Exemplo 3 - Modelo
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7 Escoamento de Rayleigh

7.1 Base Teodrica

Segundo HODGE (1995), o escoamento de Rayleigh consiste em avaliar o comportamento
do fluido sob uma troca de calor através das fronteiras do sistema. Para isso deve-se assumir
hipéteses como: a troca de calor ocorrerd no sistema com se¢do constante A, sem atrito e

considerando adi¢do de massa desprezivel.

—

|
T
|
]
1
1
i
L]
1

Figura 30 — Escoamento de Rayleigh

PIMENTA, 1998.

Para o equacionamento, serd primordial a avaliacdo do escoamento de Rayleigh conhecendo
as condicdes de entrada e a troca de calor, analisando dessa forma as condi¢des de saida da com-
bustdo, conforme a equacdo 7.1. Os desenvolvimentos e métodos utilizados serdo discutidos no

tépico a seguir.

Q12 :me(Toz _Tol) (7.1)

7.2 Modelo e Simulacdes

7.2.1 Definicao do Combustivel

Para aeronaves com motores a jato, existem classes de combustiveis especificos de acordo
com as exigéncias de voo (altitude, clima e etc) e seguem normas segundo especificacdes inter-
nacionais. Alguns dos combustiveis mais utilizados, assim como a densidade p e a entalpia de

combustdo H, estdo indicados na Tabela 4 a seguir:
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Densidade e Entalpia de Combustao

Combustivel (kg/) (Ibm/gal) | (MJ/kg) | (Btu/lbm)
Jet A/A-1 | 0.775-0.830 | 6.47-6.93 42.8 18400
JP4/Jet B | 0.751-0.802 | 6.27-6.69 42.8 18400

JP5 0.787-0.845 | 6.57-7.05 42.6 18315

Tabela 4 — Tabela de Combustiveis

Fonte: HODGE, 1995.

Para esse trabalho sera utilizado como base o combustivel JET A-1. No HODGE (1995),
ressalta ainda que para poder considerar desprezivel o efeito de adicao de massa na combustdo,

alguns critérios devem ser respeitados e avaliados na simulagao:
e Razao . pp/mig < 0.02;
e Temperatura de Entrada 77 = 245 — 945 K;

e Pressdo de Entrada p; =20 — 4000 kPa;

7.2.2 Calculo do Calor Especifico

Quando trata-se com grandes variagdes de temperatura, € necessario fazer uma pequena
correcdo pois a hipdtese que o calor especifico a pressdo constante mantenha estdvel, ndo é
valida. Dessa forma, utiliza-se a equacodes 7.2 e 7.3 sugeridas no BORGNAKKE (2007):

Cpo = Co+C10+C20% +C36° (7.2)
T
0— 7.
1000 (73

Onde os valores das correcdes para a equagdo 7.2, considerando o ar como gas perfeito,

estdo indicadas na Tabela 5.

Correcoes para o Ar
Co 1.05

C -0.365

G 0.85

G -0.39

Tabela 5 — Corregoes do Cj para o Ar.

Fonte: BORGNAKKE, 2007.
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7.2.3 Equacionamentos e Simula¢des

Para as simulagdes, serdo utilizadas as equagdes 7.4 a 7.8, equagdes essas conhecidas das re-

feréncias para um caso tipico de escoamento de Rayleigh. As equacdes estdo indicadas abaixo:

T 1+kM? M2
—=[—]2 (7.4)
Ti 1—|—kM2 Ml
p> M} 1+kM;
= =1 2] (7.5)
p1 M; 1+kM1
2 2 k=122

T M 6)
T 1+kM3 MP1+ 5102 '

1+ kM?
pr_ M (7.7)
D1 l—l—kM2
P _ LHkME 1+ 5EMs (1.8)
Pot  1+kM3 145102 '

Considerando que todo o calor gerado na queima do combustivel, seja utilizado na variagao
de temperatura do ar, sem ter perdas nas fronteiras do sistema. Pode-se definir a temperatura e

estagnacdo na saida (estado 2) de acordo com as equagdes 7.9 e 7.10.

Q172 = marcp(Toz - Tol) = mcombHV (79)
i combH,
Ty = Ty + eomby (7.10)

Determinada a temperatura de estagnagdo da saida, pode-se seguir por duas abordagem,
para se determinar as demais varidveis: a partir do estado critico como referéncia e Tabelas
de Rayleigh ou por manipulagdo matemadtica. Utilizando pelas tabelas de Rayleigh, sabendo
a temperatura de estagnagdo T, determina-se a relacdo T,,/T* e por meio de interpolagdo,
define-se todas as propriedades de saida do escoamento, conforme indicados nos resultados no

proximo topico.
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7.3 Resultados

Angulo de Declive » Mimero de Mach M, (Entrada M, =2)
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Figura 31 — Angulo de Declive x Ntmero de Mach M», M} =2
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Figura 32 — Angulo de Declive x Ndmero de Mach M, M| = 3
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Angulo de Declive x Mimero de Mach M, (Entrada M, = 4)
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Figura 33 — Angulo de Declive x Niimero de Mach My, M| = 4
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Figura 34 — Angulo de Declive x Pressio, M| =2
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Pressdo (kPa)

Pressao (kPa)

Angulo de Declive ¥ Pressdn (Entrada M, =3)
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Figura 35 — Angulo de Declive x Pressio, M| = 3

Angulo de Declive x Pressdo (Entrada M, =4)
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Figura 36 — Angulo de Declive x Pressdo, M; = 4
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Figura 37 — Angulo de Declive x Temperatura, M; = 2
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Figura 38 — Angulo de Declive x Temperatura, M; = 3
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Figura 39 — Angulo de Declive x Temperatura, M| = 4
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Figura 40 — Angulo de Declive x Densidade, M| = 4
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Figura 42 — Angulo de Declive x Densidade, M| = 4
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7.3.1 Verificacao

O exemplo tratado para o Escoamento de Rayleigh segue o esquema da figura 30, descrito

a seguir:

e Considerando o escoamento de ar em um duto a uma velocidade de V; = 448 m/s e com
condi¢des do escoamento como 77 = 51°C = 222K e p; = 68 kPa. Com o calor sendo
transferido para o duto numa relacio de ¢ = 11,5 kJ/kg, deve ser calculado as condi¢des

do escoamento apos a transferéncia de calor.

Solugdo: Calculando as condi¢Oes anteriores do escoamento:

a; =/ kRT; =/(1.4)(287)(222) = 298.7m/s

Vi 48
V= 2987

1.4—-1

k—1
T, :T1(1+TM12) —=222(1 + (1.5)%) = 321.9K

k=1 5 (& 1.4—1
po1 = pi(1 +TM12)(H) = 68(1+

1.

(1.5)%)(04) = 249.6kPa

~

Dados da Tabela de Rayleigh para M| = 1: ;‘—’{ =0.90928 e i% =1.12155

ol

Calculando o valor do C,, pode-se determinar a temperatura de estagnagdo 7, e assim as

condicdes do escoamento:

T,

=——=0.222
1000 0

Cp=Cpo+Cp10+Cp0*+Cp36° = 1.007

115
To=T,+-L =3219+ -2 —33332K

C, 1.007

Calculando a razao % para poder interpolar os resultados nas tabelas de Rayleigh:
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Ty TpTa T4 333.32
02 _ 2 2ol ol _ 222072(0,90928) (1) = 0.9415
Ty TaTHT, 3219

Interpolando nas Tabelas de Rayleigh: My = 1.37 e % = 1.06642

02

D 1.06642)(1)(249.
p02:pizp_izhp01:< 06642)(1)(249.6) _ 537 31py
p02p01 pol 1.12155
237.3
p2= P2 ___ - = 77.77kPa

S

(1+5Mpyer 1+ 141(1.37)2)0a

T, 33332
(=504 14 511577

T = =2423K

Solugdo Numérica: Os resultados obtidos do modelo estdo na tabela 6 a seguir:

Resultados
M; [ 1.5000
7y | 222.0000
1 | 68.0000
g | 11.5000
7,1 | 321.9000
Dol 249.6301
T [ 0.9093

ol
531 1.1215
C, | 1.0066
T,, | 333.3247
?—5 0.9415
M, | 1.3701
P2 11,0665
Py
Doy | 237.3879
py | 77.7924
T, | 242.3485

Tabela 6 — Solugdo para Exemplo 4 - Modelo
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8 Bocal Divergente

8.1 Modelo e Simulacdo

O escoamento através de um bocal funciona basicamente como um escoamento de area
varidvel, conforme abordado em tdépico anterior, onde a expansdo da saida, faz com que o
fluido seja acelerado. Assim com os resultados de saida do bocal, t€ém-se dados suficientes para
calcular a dinamica do Ramjet.

Para no bocal divergente, utilizou-se uma relacio de areas de saida e de entrada igual a 10, e
calcularam-se as condi¢des do escoamento na saida através do estado critico e por interpolacdo
nas tabelas isoentropicas.

8.2 Resultados

Engulo de Declive x Mimero de Mach M, (Entrada M, =2)
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Figura 43 — Angulo de Declive x Ndmero de Mach M, M} =2
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Angulo de Declive ¥ Mimero de Mach M, (Entrada M, = 3)
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Figura 44 — Angulo de Declive x Niimero de Mach My, M| =3

Angulo de Declive ¥ Mimero de Mach M, (Entrada M, = 4)
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Figura 45 — Angulo de Declive x Ntmero de Mach M, M| = 4
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Figura 47 — Angulo de Declive x Pressdo, M| = 3
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Angulo de Declive ¥ Pressdn (Entrada M, =4)
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Figura 48 — Angulo de Declive x Pressao, M| =4
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Figura 49 — Angulo de Declive x Temperatura, M; = 2
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Figura 50 — Angulo de Declive x Temperatura, M| = 3
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Figura 51 — Angulo de Declive x Temperatura, M; = 4
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Angulo de Declive x Densidade (Entrada M, =2)
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Figura 52 — Angulo de Declive x Densidade, M; = 2

Angulo de Declive x Densidade (Entrada M, =3)
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Figura 53 — Angulo de Declive x Densidade, M| = 3
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Angulo de Declive x Densidade (Entrada M, =4
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Figura 54 — Angulo de Declive x Densidade, M| = 4

8.2.1 \Verificacao

Para esse ultimo exemplo, o exercicio abordado serd a continuagdo do exercicio do difusor

que escoa oxigénio:

e Para as condi¢des do escoamento do oxigénio apds o difusor, calcular as condi¢des de

safda para uma 4rea final A3 = 1.2 m?.

Solugdo: A partir dos dados e conhecidas as equagdes para fluidos compressiveis, calcula-se

as propriedades antes e depois do bocal:

Da tabela para escoamento com k = 1.4: M = 1.1, 52 = 1.003, TT; =1.242¢ 22 =2.1352

Az AzA, 12
53032 % (1.003) =2.9572
A A A, 0,407 1003) = 2957

Interpolando na tabela para escoamento com k = 1.4 com 2—2: Mz =2.62, TTLS =23729e¢

B3 — 2(.5804
p3

5 T3T, 1
;= _3L3L2T2 —
T3 Ton T 2.3729

(1)(1.242)(349) = 182.7K
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Py = P3 Po3 Po2 Dy =
Po3 Po2 P2 20.5804

(1)(2.1352)(0.11) = 11.41kPa

Solucdo Numérica: Os resultados obtidos do modelo estdo na tabela 7 a seguir:

Resultados
M, | 1.0993
p> | 0.1095
T, | 350.2682
Ay | 0.4070
As | 1.2000
21 2.9484

2
2 [ 1.0078
T2 | 1.2417

2
2121334
P2
] 29715
Ms | 2.6273
Ia | 23805

3
Pt 1 20.8145
Ty | 182.7045
py | 11.2233

Tabela 7 — Solugao para Exemplo 5 - Modelo
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9.1 Empuxo Especifico

49

Ap6s o desenvolvimento completo do modelo, resta calcular a dindmica do Ramjet € o seu

rendimento termodinamico. Para o calculo do empuxo gerado durante o escoamento através do

Ramjet, é importante conhecer as condi¢des da entrada e saida do fluxo de massa e da pressao,

conforme a equacdo 9.1 a seguir:

F =mgVig —m,V, + (ps - pe)Ae

9.1)

Como trata-se de uma modelagem simplificada, o dimensionamento da geometria e dreas é

desconhecida, dessa forma com o auxilio de equagdes fundamentais para fluido compressiveis,

temos que:

F = 1itgVy — i,V + (ps — pe)Ae

= mgasesvgases — Mgy Var + (Pgases - par)Aentrada

Aentrada

m
— s Vgases —Var+ ( Pgases — par)

ar ar

= (1 + RAC)Vgases — Ve + (pgases - Par)

Aem‘rada

(parVarAentrada)

(pgases - par)
(ParVar)

p —P
= (1 + RAC)Mgasesagases —Myraqr+ %

= (1 + RAC)Vgases - Var +

Onde o RAC é€ a relacio de ar-combustivel, definida segundo a equacao 9.2 a seguir:

_ Mceomb

RAC = -
Mgy

Definindo dessa forma a equag@o para o empuxo especifico f em 9.3:

(pgases - par)
( ParM araar)

f ( 1+ RAC)Mgasesagases —Myrag +

9.2)

9.3)

Os resultados a seguir, mostram como variam os valores de empuxo especifico de acordo

com as diversas combinacdes de angulo de aclive na Onda de Choque Obliqua com o angulo de

declive na expansao de Prandtl-Meyer, além da variacdo da velocidade de entrada.
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Angulo de Declive ¥ Empuxo (Entrada M, =2

N E—- - T — e T I ]
= : : : theta = 14°
3 theta = 16°
= =
2 L theta = 18"
é theta = 20°
£ 100 . . _ theta = theta__ = 22.9705° [|
I I I | i
30 35 _ 40 45 a0
Angulo de Declive (%)
Angulo de Declive x Empuxo (Entrada M, =3
! . | T ! ! ! I I
i ' : : ; ' : : theta = 22°
o [
= 10 ; -theta = 25°
= :
= " theta = 2&8°
= A : theta = 31° 1
S L R SO S S S il e
i I i | i i | | | i
42 44 45 43 50 a2 54 56 55 =]
Angulo de Declive (%)
Angulo de Declive x Empuxo (Entrada M, = 4]
BDD Errars T | ........................ | EE e T | T T T | T T =
2o ; : . theta = 27°
faz] H
= an theta = 30°
= 400 theta = 33° I
g N0 theta = 367 L
= q : : : theta = theta = 38.7737° ||
i i i I |

45 50 5 1] 65
Angulo de Declive (%)

Figura 55 — Angulo de Declive x Empuxo

9.2 Rendimento de Carnot

Para o modelo idealizado do Ramjet, o rendimento méximo tedrico que pode ser determi-

nado € um rendimento de Carnot correspondente para um ciclo ideal, conforme a equagao 9.4:

n=1--1 (9.4)

Onde para o caso do modelo tratado como um Carnot, onde temos a diferenca de calor de um

reservatorio mais quente para um mais frio, a temperatura 7 refere a temperatura no Prandtl-
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Meyer e a temperatura T;, refere a temperatura apos a combustdo no escoamento de Rayleigh.

Assim, tem-se a equacao para o rendimento do modelo conforme visto em 9.5 a seguir:

Tprandti—m eyer

TRayleigh
Arngulo de Declive ¥ Rendimento (Entrada M, =2)
= O o s R s s I I
g theta = 147
= ‘theta = 167
= theta = 18°
= theta = 20°
é theta = theta = 22.9705° ]

30 35 A 40 45 50
Angulo de Declive (%
Angulo de Declive x Rendimento [Entrada M, =3

I
oy : theta = 227
= e ‘theta = 267
E theta = 28°
= : theta = 31°
E theta = thetamax =34.0716"
| i I I

i 1
42 44 46 43 50 52 54 o] a3 G0
Angulo de Declive (%)
Angulo de Declive x Rendimento [Entrada M1 =4

100 T T T I I
= ; : : theta = 27°
P “theta = 30°
= theta = 33°
5 theta = 35°
E theta = theta = 38.7737°

45 50 5 =] 65
Angulo de Declive (%)

Figura 56 — Angulo de Declive x Rendimento de Carnot

9.3 Rendimento Real

Para o rendimento real do Ramjet, deve-se avaliar a quantidade de trabalho gerado pelo

motor a jato pela calor disponivel através da combustao. Dessa forma, obteve-se a equagao 9.6
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a seguir:

JVi

H.RAC (9.6)

NRamjer =

Engulo de Declive x Rendimento (Entrada M, =2)

T T T I I

o 0 ; theta = 14°

g ‘theta = 167

I theta = 187

= theta = 20°

= L 2
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i i i I 1
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Angula de Declive (%)
Angulo de Declive x Rendimento (Entrada M, = 3)

T T T T T T T I I I
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1 | i
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Figura 57 — Angulo de Declive x Rendimento Real

Pelo resultados pode-se constatar que o rendimento Nggmjer € bem menor que o 1) para o
ciclo ideal, isto deve-se ao fato de levar em conta boa parte das perdas do motor a jato durante
um ciclo.

Para um modelo idealizado inicial, os resultados apresentados sao bem proximos as condigdes
de operacdes para motores a jato desse porte. Dessa forma, pode ser determinado quais condicdes
de angulos iniciais deve-se ter o Ramjet para alcancar uma faixa de operacdo proxima a es-

pecifica na saida. Esse modelo deve ser avaliado como uma aproximacao inicial para o modela-
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mento do Ramjet, pois ndo foram levados em conta um primeiro esboco para as geometrias do

motor, etapa essa que pode ser iniciada a partir desse estudo preliminar.
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A Simulacdo do MATLAB

99% Programa MatlLab — Ramjet

9% Constantes

pi = 3.141592655359;

k = 1.4;

R = 287;

j = 1xpi/180;

beta_ini = 40xpi/180;
beta_fin = 80xpi/180;

beta = beta_ini:j:beta_fin;
beta_deg = 40:1:80;

H.v = 42800;

Cp0 = 1.05;

Cpl = —0.365;
Cp2 = 0.85;

C_p3 = —0.39;
r_fuel_air = 0.002;
rA = 1.50;

rB = 10;

%% Condicoes Iniciais

Min_1 = 2;
Min_2 = 3;
Min_3 = 4;

Mquad_-1 = Min_1*Min_1;
Mquad_ 2 = Min_2xMin_2;
Mquad_3 = Min_3xMin_3;

pl = 15;
rhol = 0.239;
Tl = 218.15;

A = (k+1)/(k—-1);

Vin_1 = Min_lxsqrt (k*R«T1l);
Vin_2 = Min 2xsqrt (kxRxT1);
Vin_3 = Min 3xsqrt (k«RxT1);

99% 1 — Ondas de Choque Obliquas

55
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36 9% 1.1 — Simulador
37 for i = 1:41

38 aux]l = Mquad_l1*sin(beta(i))*sin(beta(i))—1;
39 aux2 = Mquad_2*sin(beta(1))*sin(beta(1))—1;
40 aux3 = Mquad 3*sin(beta(i))*xsin(beta(i))—1;
41 aux4 = Mquad_1x*(k+cos(2xbeta(i)))+2;

42 aux5 = Mquad_2x(k+cos(2xbeta(i1)))+2;

43 aux6 = Mquad 3*(k+cos(2xbeta(i)))+2;

44 tgl (i) = 2xcot(beta(i))=(auxl/aux4);

45 tg2 (i) = 2xcot(beta(i))=*(aux2/auxs);

46 tg3(1) = 2xcot(beta(i))=*(aux3/aux6);

47 atl (i) = atan(tgl(i));

48 at2 (1) = atan(tg2(i));

49 at3(1) = atan(tg3(1));

50 at_degl (i) = atl (i)*180/pi;

51 at_deg2 (1) = at2(i)*180/pi;

52 at_deg3 (1) = at3(1)*180/pi;

53 Mnl_1(i) = Min_lxsin(beta(i));

54 Mnl 2(i) = Min_2xsin(beta(i));

55 Mnl_3(i) = Min_3*xsin(beta(1i));

56 AS = 2/(k—-1);

57 SA = kx*AS;

58 aux7(i) = Mnl_1(1)*Mnl_1(1);

59 aux8(i) = Mnl 2(i)*Mnl_2(1);

60 aux9 (i) = Mnl 3(i)*xMnl_3(1);

61 aux10(1) = (aux7(i)+AS)/(SAxaux7(i)—1);
62 aux11(i) = (aux8(1i)+AS)/(SAxaux8(i)—1);
63 aux12(i) = (aux9(i)+AS)/(SAxaux9(i)—1);
64 Mn2 1(i) = sqrt(aux10(i));

65 Mn2 2(1) = sqrt(auxll(i));

66 Mn2 3(i) = sqrt(auxl2(i));

67 M2_1(i) = Mn2_1(i)/cos(beta(i)— atl(i));
68 M22(i) = Mn22(i)/cos(beta(i)— at2(i));
69 M23(i) = Mn2_.3(i)/cos(beta(i)— at3(1i));
70 aux13 = (k+1)«Mnl_1(i)*Mnl_1(1i);

71 aux14 = (k+1)«Mnl 2(i)*Mnl_2(1i);

72 aux15 = (k+1)«Mnl1.3(i)*xMnl_3(1);

73 aux16 = Mnl_1(i1)*Mnl_1(1)*x(k—1)+2;

74 aux1l7 = Mnl 2(i)*Mnl 2(i)=*(k—1)+2;
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aux18 = Mnl 3(1)*Mnl 3(1)*x(k—1)+2;

r_rhol (1)
r_.rho2 (i)
r_.rho3 (1)
rpl(i) =
rp2(i) =
r-p3(i)
p2-1(1)
p2-2(i) =
p2.3(i) =
rho2_1(i)
rho2_2 (i)
rho2_3(i1)
T2 1(i) =
T2.2(i) =
T2 3(1) =

end

= auxl3/auxl6;

= auxl4/aux17;

= auxl5/auxl18;

1+(2%k/(k+1))*(Mnl_1(i)*Mnl_1(i)—1);
1+(2%k/(k+1))*(Mnl_2(i)*Mnl 2(i)—1);
1+(2xk/(k+1)) *(Mn1_3(i)*Mnl_3(i)—1);

plxr_pl(i);
pl*xr_p2(i);
plxr_p3(i);
= rhol*r_rhol (i);

rhol*r_rho2(i);
rholxr_rho3(i);

Tlx(r_pl(i)/r_rhol(i));
Tlx«(r-p2(i)/r-rho2(i));
Tlx(r_p3(i)/r-rho3(i));

%% 1.2 — Graficos

figure (1)

handlel=plot(at_degl ,beta_deg , 'm’ ,at_deg2 ,beta_deg, g’

beta_deg, 'r’);
set (handlel , " LineWidth’ ,1.5);

title (theta—beta-M’");

xlabel (" Angulo de Deflexao 7);

ylabel ("Angulo de Choque

legend ("M_1 =
grid on;

figure (2)

27 ,°’M_1

)
3°,°M_1

47)5

,at_deg3 ,

handle2=plot(beta_deg ,rho2_1, 'm’ ,beta_deg ,rho2_2, g’ ,beta_deg,

rho2.3,°1r7);
set (handle2 , LineWidth’ ,1.5);
title (’Angulo de Choque x Densidade’);
ylabel (" Densidade °);

xlabel (" Angulo de Choque

legend ("M_1 =
grid on;

27 ,°’M_1

)
3°,°M_1

47)5
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figure (3)

handle3=plot(beta_deg ,p2_1, 'm’ ,beta_deg ,p2.2, g’ ,beta_deg ,p2.3,
)

set (handle3 , 'LineWidth’ ,1.5);

title (" Angulo de Choque x Pressao’);

ylabel (" Pressao’);

xlabel (" Angulo de Choque’);

legend ("M 1 = 2" ,"M. 1 =3","M.1 = 4");

grid on;

figure (4)

handled4=plot(beta_deg ,T2_1, 'm’ ,beta_deg ,T2.2, g’ ,beta_deg ,T2.3,
)

set (handle4 , " LineWidth’ ,1.5);

title (’Angulo de Choque x Temperatura’);

ylabel (" Temperatura 7);

xlabel (" Angulo de Choque ’);

legend ("M 1 = 2" ,"M. 1 =3","M.1 = 4");

grid on;

figure (5)

handle5S=plot(beta_deg ,M2_1, 'm’ ,beta_deg ,M2.2, ¢’ ,beta_deg ,M2.3,
)5

set (handle5 ,  LineWidth’ ,1.5);

title (’Angulo de Choque x Numero de Mach M2’);

ylabel ("Numero de Mach’);

xlabel (" Angulo de Choque ’);

legend ("M 1 = 2" ,"M. 1 =3","M.1 = 4");

grid on;

99% 1.2 — Caso Particular

EX1M1 = 1.5;

EX1_.T1 = T1;

EX1 pl 8x6.89476;

EX1_rhol = (EX1_pl1%1000)/(R+EX1.T1);
EX1_M1_quad = EX1 MI1+EX1 Ml;
EX1_delta = 5;

EX1 _delta_.rad = EX1_deltaxpi/180;
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148 comp = 1:80;

149 for 1=1:80

150 comp_rad(i) = comp(i)xpi/180;

151 partel = EX1_Ml_quad*sin(comp-rad(1i))*sin(comp-rad(1i))—1;

152 parte2 = EX1_MI1_quadx*(k+cos(2xcomp_rad(i)))+2;

153 tab_ OC (i) = 2xcot(comp_rad(i))=*(partel /parte2);

154 EX1_theta(i) = atan(tab_OC(1i));

155 EX1_theta_deg(i) = EX1_theta(i)=*180/pi;

156 end

157

158 cont = 1;

159 while EX1_delta > EXI1 _theta_deg(cont)

160 cont = cont + 1;

161 end

12 parte3 = (comp(cont)—comp(cont—1))*x(EX1_delta—EXI1 _theta_deg(
cont —1));

163 parte4 = EX1_theta_deg(cont)—EXI1_theta_deg(cont—1);
164 EX1_angchoque = comp(cont—1) + parte3/parted;
165 EX1_angchoque_rad = EX1_angchoquexpi/180;

166 EX1 Mnl = EXI1 Mlx*sin(EX1 _angchoque_rad);

167 AS = 2/(k—1);

168 SA = kx*xAS;

169 parte5S = EX1 _Mnl*EXI1 _Mnl;

170 parte6 = (parte5S+AS)/(SAxparte5 —1);

171 EX1 Mn2 = sqrt(parte6);

172 EX1_M2 EX1_Mn2/cos (EX1_angchoque_rad— EX1_delta_rad);
173 parte7 (k+1)*EX1_Mnl*EX1_Mnl ;

174 parte8 = EX1 Mnl*EX1 Mnlx*x(k—1)+2;

175 EX1_r_rho = parte7/parte8;

176 EX1_r_.p = 14+(2xk/(k+1)) *(EXI_Mnl*EX1_-Mnl—1);
177 EX1.p2 = EX1_pl*EX1_r_p;

178 EX1_rho2 = EX1_rhol*EXI1_r_rho;

179 EX1. T2 = EX1.T1«(EX1_r_p/EX1_r_rho);

180

181 99% 2 — Variacao de Area

182 9% 2.1 — Tabelas

183 M_est_in = 0.01;

184 M_est_fin = 10;

185 incl = 0.01;
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IFT(1,:) = M_est_in:incl:M_est_fin;

for

end

96%

for

end

for

end

for

i=1:1000

99% T_0/T

IFT(2,1) = 1+((k—=1)/2)*IFT(1,1)*IFT(1,1);

99% p_-0/p

IFT(3,1i) = (IFT(2,1)) (k/(k—1));

99% tho_0/rho

IFT(4,1) = (IFT(2,i))"(1/(k—-1));

9% Al A _cit

IFT(5,1) = (1/IFT(1,1))*((2+(k—1D)*IFT(1,1)*IFT(1,1))/(k+1))
T((k+1)/(2%(k—1)));

2.2 — Simulador

i=1:41

VAMI_I(1,i) = M2_1(1);

VAMI2(1,i) = M22(i);

VAMI3(1,i) = M2.3(i);

i=1:41

cont = 100;
while VAMI_1(1,1) > IFT(1,cont)

cont = cont + 1;

end

for 1=2:5

aux76 = (VAMI_1(1,1)-IFT(1,cont—1))*(IFT(1,cont)—IFT(I,
cont—1));

aux77 = IFT(1,cont)—IFT(1,cont—1);
VAMI_1(1,1) = IFT(1,cont—1) + aux76/aux77;

end
i=1:41
cont = 100;
while VAMI2(1,1i) > IFT(1,cont)
cont = cont + 1;
end

for 1=2:5
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223 aux76 = (VAMI1.2(1,1)—IFT(1,cont—1))«(IFT(1,cont)—IFT (1,
cont—1));

224 aux77 = IFT(1,cont)—IFT(1,cont—1);

225 VAMI2(1,i) = IFT(1l,cont—1) + aux76/aux77;

226 end

227 end

228

29 for i=1:41

230 cont = 100;

231 while VAM13(1,i) > IFT(1,cont)

232 cont = cont + 1;

233 end

234 for 1=2:5

235 aux76 = (VAMI1.3(1,1)—IFT(1,cont—1))«(IFT(1,cont)—IFT (1,
cont—1));

236 aux77 = IFT(1,cont)—IFT(1,cont—1);

237 VAM13(1,1) = IFT(1,cont—1) + aux76/aux77;

238 end

239 end

240

21 9% 2.3 — Saida da Variacao de Area
22 for i1=1:41

243 VAM2_1(5,1)
244 VAM22(5,1)
245 VAM23(5,1)

rAxVAMI1_1(5,1);
rAxVAM1.2(5,1);
rAxVAM1.3(5,1);

246 end

247

248 for i1i=1:41

249 cont = 100;

250 while VAM2_1(5,1i) > IFT(5,cont)

251 cont = cont + 1;

252 end

253 for 1=1:4

254 aux76 = (VAM2_1(5,1)—IFT(5,cont—1))«(IFT(1,cont)—IFT (1,
cont—1));

255 aux77 = IFT(5,cont)—IFT(5,cont—1);

256 VAM2_1(1,1i) = IFT(1l,cont—1) + aux76/aux77;

257 end

258 end
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for

end

for

end

for

end

i=1:41
cont = 100;
while VAM22(5,i) > IFT(5,cont)
cont = cont + 1;
end
for 1=1:4
aux76 = (VAM22(5,1)-IFT(5,cont—1))«(IFT(l,cont)—IFT (I,
cont—1));

aux77 = IFT(5,cont)—IFT(5,cont—1);
VAM22(1,i) = IFT(1l,cont—1) + aux76/aux77;

end

i=1:41
cont = 100;
while VAM23(5,1) > IFT(5,cont)
cont = cont + 1;
end
for 1=1:4
aux76 = (VAM23(5,i)-IFT(5,cont—1))*(IFT(1,cont)—IFT (1,
cont—1));

aux77 = IFT(5,cont)—IFT(5,cont—1);
VAM23(l,i) = IFT(1l,cont—1) + aux76/aux77;

end

i=1:41
VA T2 1(i) = T2 1(i)*(VAMI_1(2,i)/VAM2.1(2,i));
VA_T2.2(i) = T2.2(i)*(VAMI2(2,i)/VAM22(2,i));
VA_T2.3(i) = T2.3(i)*(VAMI3(2,i)/VAM23(2,i));
VA_p2.1(i) = p2_1(i)+«(VAMI_1(3,i)/VAM2.1(3,i));

VA p2.2(i) = p2.2(i)*«(VAMI2(3,i)/VAM22(3,i));
VA_p2.3(i) = p2.3(i)*(VAMI3(3,i)/VAM23(3,i)):

VA tho2 1(i) = rho2_ 1(i)*(VAMI_1(4,i)/VAM21(4,i));
VA tho2 2(i) = rho2 2(i)*(VAMI2(4,i)/VAM22(4,i)):
VA_tho2.3(i) = rho2.3(i)*(VAMI3(4,i)/VAM23(4,i)):
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%% 2.4 — Graficos
figure (11)

handlell=plot(beta_deg ,VA_rho2_1, 'm’ ,beta_deg ,VA_rho2 2, g’ ,

beta_deg , VA_rho2.3,'r");
set (handlell ,  LineWidth’ ,1.5);
title (" Angulo de Choque x Densidade’);
ylabel (" Densidade 7);
xlabel ("Angulo de Choque 7);
legend ("M_1 = 2°,"M.1 =37 ,"M.1 = 47);

grid on;

figure (12)

handlel2=plot(beta_deg ,VA p2_1, 'm’ ,beta_deg ,VAp2.2, 'g’,

beta_deg ,VA_p2.3,°1r");
set (handlel2 , LineWidth’ ,1.5);
title (’Angulo de Choque x Pressao’);
ylabel (*Pressao 7);
xlabel ("Angulo de Choque 7);
legend ("M_1 = 27 ,"M.1 =37 ,"M.1 = 47);

grid on;

figure (13)

handlel3=plot(beta_deg ,VA.T2_1, 'm’ ,beta_deg ,VAT2.2, g’ ,

beta_deg ,VA_T2.3,°1r");
set (handlel3 , LineWidth’ ,1.5);
title (" Angulo de Choque x Temperatura’);
ylabel (" Temperatura );
xlabel ("Angulo de Choque 7);
legend( "M 1 = 2°,"M1 =3","M1 = 4");

grid on;

figure (14)

handlel4=plot(beta_deg ,VA M2 1(1,:), m’ ,beta_deg ,VAM22(1,:),"

g’ ,beta_deg ,VAM23(1,:),’r");
set (handlel4 , LineWidth’ ,1.5);
title (" Angulo de Choque x Numero de Mach M2’);
ylabel ("Numero de Mach’);
xlabel ("Angulo de Choque 7);
legend( "M 1 = 2°,"M1 =3","M1 = 4");
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331 grid on;

332
333 99% 2.5 — Caso Particular

3¢ EX2_A1 = 0.56;

335 EX2_A2 = 0.407;

336 EX2_A21 = EX2_A2/EX2_Al;

337 EX2_V1 = 195;

333 EX2 pl = 0.2;

339 EX2_.T1 = 416;

340 EX2 al = sqrt(kxR+«EX2 . T1);

341 EX2. M1 = EX2_V1/EX2_al;

32 EX2_Tol = EX2_T1*(1+0.5%x(k—1)«xEX2_M1+EX2_M1) ;

343 EX2 Pol = EX2 pl*(1+0.5%x(k—1)*xEX2 MI1+EX2 M1) "(k/(k—1));
344

345 cont = 1;

46 while EX2_MI1 > IFT(1,cont)

347 cont = cont + 1;

348 end

349 parte9 = (EX2MI-IFT(1,cont—1))*(IFT(2,cont)—IFT(2,cont—1));
350 partelO0 = IFT(1,cont)—IFT(1,cont—1);

351 EX2_rTol = IFT(2,cont—1) + parte9/partelO;

352 partell = (EX2MI-IFT(1,cont—1))*(IFT(3,cont)—IFT(3,cont—1));
353 partel2 = IFT(1,cont)—IFT(1,cont—1);

354 EX2_rPol = IFT(3,cont—1) + partell/partel?2;

355 partel3 = (EX2.MI-IFT(1,cont—1))*(IFT(5,cont)—IFT(5,cont—1));
IFT(1,cont)—IFT(1,cont—1);

IFT(5,cont—1) + partel3/partel4d;

356 partel4
357 EX2_rAl
358

350 EX2_rA2 = EX2_rA1xEX2_A21;
360 cont = 100;

361 while EX2_rA2 > IFT(5,cont)

362 cont = cont + 1;

363 end

364 partelS = (EX2_rA2—IFT(5,cont—1))*(IFT(2,cont)—IFT(2,cont—1));
365 partel6 = IFT(5,cont)—IFT(5,cont—1);

366 EX2_rTo2 = IFT(2,cont—1) + partelS5S/partel6;

367 partel7 = (EX2_rA2—-IFT(5,cont—1))*(IFT(3,cont)—IFT(3,cont—1));
IFT(5,cont)—IFT(5,cont—1);

3¢9 EX2 _rPo2 = IFT(3,cont—1) + partel7/partel8;

368 partel8



370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

Apéndice A. Simulagdo do MATLAB 65

partel9 = (EX2_rA2—-IFT(5,cont—1))*(IFT(1,cont)—IFT(1,cont—1));

parte20

IFT(5,cont)—IFT(5,cont—1);

EX2 M2 = IFT(1,cont—1) + partel9/parte20;

EX2 _p2
EX2 T2

(EX2_pl1*EX2_rPo2)/EX2_rPol;
(EX2_T1+xEX2_rTo2)/EX2_rTol;

EX2.To2 = EX2.T2x(1+0.5%(k—1)xEX2_ M2xEX2.M2) ;
EX2_Po2 = EX2.p2#(1+0.5%(k—1)*EX2.M2+xEX2.M2) " (k/(k—1));

90
9%

3 — Prandtl —Meyer
3.1 — Tabela de Prandtl Meyer

C_min = 1;
C_max = 180;

inc
C =

for

end

9E6%

PM_theta(1,:)
PM_theta (2 ,:)
PM_theta(3,:)

for

= 0.01;

C_min:inc :C_max;

i = 1:17901

aux1l9 = C(1,1)*C(1,i) — 1;

C(2,1) = 180*(sqrt(A)*atan(sqrt(aux19/A))—atan(sqrt(auxl9))
)/ pi;

3.2 — Simulador

[14 16 18 20 at_-degl (26)];
[22 25 28 31 at_-deg2(26)];
[27 30 33 36 at_deg3(27)];

i=1:4
cont = 1;
while PM _theta(1,i) > at_degl (cont)

cont = cont + 1;
end
sl = (VA T2 1(cont)-—VA_T2_1(cont—1))*(PM_theta(l,i)—at_degl
(cont—1));

s2 = at_degl (cont)—at_degl (cont —1);

FI1(1,i) = VA_T2_1(cont—1) + sl1/s2;

s3 = (VA p2_1(cont)-VA p2_1(cont—1))*(PM_theta(1l,i)—at_degl
(cont—1));

s4 = at_degl (cont)—at_degl (cont—1);

F1(2,1i) = VAp2_.1(cont—1) + s3/s4;
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end

for

s5 = (VA_rho2_1(cont)—VA_rho2_1(cont—1))*(PM_theta(1,1)—
at_degl (cont—1));

s6 = at_degl (cont)—at_degl (cont —1);

F1(3,1) = VA_rho2_1(cont—1) + s5/s6;

s7 = (VAM2_1(1,cont)—VAM2_1(1,cont—1))«(PM_theta(1,i)—
at_degl (cont—1));

s8 = at_degl (cont)—at_degl (cont—1);

F1(4,i) = VAM2.1(1,cont—1) + s7/s8;

s9 = (beta_deg(cont)—beta_deg(cont—1))*«(PM_theta(1,1)—
at_degl (cont—1));

s10 = at_degl (cont)—at_degl (cont—1);

FI1(5,1i) = beta_deg(cont—1) + s9/s10;

sll = (beta(cont)—beta(cont—1))*x(PM_theta(l,i)—at_degl (cont
-1));

s12 = at_degl (cont)—at_degl (cont—1);

F1(6,i) = beta(cont—1) + sl11/s12;

i=1:4
cont = 1;
while PM _theta(2,1) > at_deg2(cont)
cont = cont + 1;
end

sl = (VA_T2 2(cont)-VA_T2.2(cont—1))*(PM_theta(2,1)—at_deg?2
(cont—1));

s2 = at_deg2(cont)—at_deg2 (cont—1);

F2(1,1) = VA_ T2 2(cont—1) + sl/s2;

s3 = (VA p22(cont)-VA p2 2(cont—1))*x(PM_theta(2,i)—at_deg?2
(cont—1));

s4 = at_deg2(cont)—at_deg2 (cont—1);

F2(2,1) = VA p22(cont—1) + s3/s4;

s5 = (VA_rho2_2(cont)—VA_rho2_2(cont—1))*(PM_theta(2,i1)—
at_deg2 (cont—1));

s6 = at_deg2(cont)—at_deg2(cont—1);

F2(3,1) = VA_rho2_2(cont—1) + s5/s6;

s7 = (VAM22(1,cont)-VAM22(1,cont—1))*«(PM_theta(2,i)—
at_deg2 (cont—1));

s8 = at_deg2(cont)—at_deg2 (cont—1);

F2(4,1) = VAM22(1l,cont—1) + s7/s8;
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end

for

s9 = (beta_deg(cont)—beta_deg(cont—1))*(PM_theta(2,1)—
at_deg2 (cont—1));

s10 = at_deg2(cont)—at_deg2(cont—1);

F2(5,1) = beta_deg(cont—1) + s9/s10;

sll = (beta(cont)—beta(cont—1))*(PM_theta(2,i)—at_deg2 (cont
—1));

s12 = at_deg2(cont)—at_deg2(cont—1);

F2(6,i) = beta(cont—1) + sl1/s12;

i=1:4
cont = 1;
while PM _theta(3,1i) > at_deg3 (cont)
cont = cont + 1;
end

sl = (VA.T2.3(cont)-VA_ T2 3(cont—1))*(PM_theta(3,1i)—at_deg3
(cont—1));

s2 = at_deg3(cont)—at_deg3 (cont—1);

F3(1,1i) = VA_T2.3(cont—1) + sl1/s2;

s3 = (VA p2.3(cont)-VA p2 3(cont—1))*(PM_theta(3,1)—at_deg3
(cont—1));

s4 = at_deg3 (cont)—at_deg3 (cont—1);

F3(2,1) = VA p23(cont—1) + s3/s4;

s5 = (VA_rho2_3(cont)—VA_rho2_3(cont—1))*(PM_theta(3,1)—
at_deg3 (cont—1));

s6 = at_deg3 (cont)—at_deg3 (cont—1);

F3(3,1) = VA_rho2_3(cont—1) + s5/s6;

s7 = (VAM23(1,cont)-VAM23(1,cont—1))*(PM_theta(3,1i)—
at_deg3 (cont—1));

s8 = at_deg3 (cont)—at_deg3 (cont—1);

F3(4,1i) = VAM23(1,cont—1) + s7/s8;

s9 = (beta_deg(cont)—beta_deg(cont—1))*(PM_theta(3,1)—
at_deg3 (cont—1));

s10 = at_deg3 (cont)—at_deg3(cont—1);

F3(5,1i) = beta_deg(cont—1) + s9/s10;

sl = (beta(cont)—beta(cont—1))*x(PM_theta(3,i)—at_deg3 (cont
-1));

s12 = at_deg3(cont)—at_deg3(cont—1);

F3(6,i) = beta(cont—1) + sl11/s12;
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end

PM TI1(1,:) = [FI(1,1) FI1(1,2) F1(1,3) F1(1,4)
PM.T1(2,:) = [F2(1,1) F2(1,2) F2(1,3) F2(1,4)
PM.T1(3,:) = [F3(1,1) F3(1,2) F3(1,3) F3(1,4)
PMMI(1,:) = [F1(4,1) F1(4,2) F1(4,3) Fl(4,4)
PMMI(2,:) = [F2(4,1) F2(4.,2) F2(4.,3) F2(4,4)
PMMI(3,:) = [F3(4,1) F3(4,2) F3(4,3) F3(4,4)
PM.pl(1,:) = [F1(2,1) F1(2,2) F1(2,3) F1(2,4)
PM pl(2,:) = [F2(2,1) F2(2,2) F2(2.,3) F2(2,4)
PM.pl(3,:) = [F3(2,1) F3(2,2) F3(2,3) F3(2,4)
PM _rhol (1,:) = [F1(3,1) F1(3,2) F1(3,3)
PM _rhol (2,:) = [F2(3,1) F2(3,2) F2(3,3)
PM_rhol (3,:) = [F3(3,1) F3(3,2) F3(3,3)
PM beta(1,:) = [F1(5,1) F1(5,2) F1(5,3)
PM beta(2,:) = [F2(5,1) F2(5,2) F2(5,3)
PM beta(3,:) = [F3(5,1) F3(5,2) F3(5,3)

PM _betar (1 ,:)
PM _betar (2 ,:)
PM _betar(3,:)

for

end

for

i=1:3
for 1 = 1:5
B

PMMI(i,1)«PMMI(i,1) — 1;

VA_T2.1(26) ]:
VA T2.2(26)1:
VA T23(27)1:

VA M2.1(26) 1;
VA M2.2(26)1;
VA M23(27)1;

VA p2.1(26)];
VA p2.2(26)];
VA p2.3(27)1];

F1(3,4) VA_rho2_1(26)1;
F2(3,4) VA_rho2.2(26)1;
F3(3.4) VA_rho2.3(27)];

F1(6,4) beta_deg(26)];
F2(6,4) beta_deg(26)];
F3(6,4) beta_deg(27)];

[F1(5,1) F1(5,2) F1(5,3) F1(6,4) beta(26)];
[F2(5,1) F2(5,2) F2(5,3) F2(6,4) beta(26)];
[F3(5,1) F3(5.,2) F3(5.,3) F3(6,4) beta(27)];

PM.onul(i,l) = 180x(sqrt(A)xatan(sqrt(B/A))—atan(sqrt(B)

))/pi;
end

i = 1:60

for 1 = 1:5
nu2_1(1,1)
nu2_2(1,i)
nu2_3(1,i)

PM_nul(1,1)+PM_theta(1,5)+1;
PM_nul(2,1)+PM_theta(2,5)+1;
PM_nul (3,1)+PM_theta(3,5)+i;
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end

end

for 1 = 1:20

lambl (i)= PM_theta(1,5)+1;
lamb2 (i)= PM_theta(2,5)+i;
lamb3 (i)= PM_theta(3,5)+i;
end
for 1 = 1:5
for 1 = 1:60
cont = 1;
while nu2_1(i,1) > C(2,cont)
cont = cont + 1;
end
aux20 = (nu2_1(i,1)—C(2,cont—1))*(C(1,cont)—C(1,cont—1));
aux21 = C(2,cont)—C(2,cont—1);
PMM2_1(i,1) = C(1,cont—1) + aux20/aux21;
end
end
for 1 = 1:5
for 1 = 1:60
cont = 1;
while nu2_2(i,1) > C(2,cont)
cont = cont + 1;
end
aux22 = (nu2_2(i,1)—C(2,cont—1))*(C(1,cont)—C(1,cont—1));
aux23 = C(2,cont)—C(2,cont—1);
PM_M22(i,l) = C(1,cont—1) + aux22/aux23;
end
end
for 1 = 1:5
for 1 = 1:60
cont = 1;
while nu2_3(i,l) > C(2,cont)
cont = cont + 1;
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545

546

547

548

549

550 end

551

552 for

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567 end

568

end
aux24 = (nu2_3(i,1)-C(2,cont—1))*(C(1,cont)—C(1,cont—1));
aux25 = C(2,cont)—C(2,cont—1);
PM_M23(i,1) = C(1,cont—1) + aux24/aux25;

end

i =1:5

for 1 = 1:60

PM_T2_1(i,1) = PM.T1(1,1i)*((2+(k—1)«xPMMI1(1,i)«PMMI(1,i))
/(2+(k—1)«PM_M2_1(i,1)«PM.M2_1(i,1)));

PM_To2_1(i,1) = PM_T2_1(i,1)*(1+((k—1)/2)«*PMMI1(1,1i)*PMMI
(L,1))3

PM_p2_1(i,1) = PMpl(1,i)/(((2+(k—1)«xPM_M2_1(i,1)*xPM_M2_1(i
,I)))/(2+4(k—1D«PMMI(1,i)«PMMI(1,i))) " (k/(k—=1)));

PM_rho2_1(i,1) = PM_rhol (1,1)*((2+(k—1)«xPMMI(1,i)+*PMMI(1,
i))/(2+(k—1)«PM. M2 1(i,1)«sPMM2_1(i,1)))"(1/(k—=1));

PM.T22(i,1) = PM.T1(2,1)*((2+(k—=1)xPMMI1(2,1)*xPMMI1(2,1))
/(2+(k—1)«*PM_M22(i,1)*PM_M22(i,1)));

PM_To2 2(i,1) = PM_T22(i,1)*(1+((k—1)/2)*PMMI1(2,1)*PM_MI
(2,1));

PM_p22(i,1) = PMpl(2,i)/(((2+(k—1)«xPM_M22(i,1)*xPM_M22(i
,I)))/(2+4(k—1D)«PMMI(2,i)«PMMI(2,i))) " (k/(k—1)));

PM_rho2_2(i,1) = PM_rhol (2,1)*((2+(k—1)«xPMMI(2,i)+«PMMI (2,
1))/ (2+(k—1)«PM_M22(i,1)«sPM_M22(i,1)))"(1/(k—=1));

PM_T2.3(i,1) = PM.T1(3,i)*((2+(k—1)«xPMMI1(3,i)«PMMI1(3,i))
/(2+(k—1)«*PM M2 3(i,1)«PM_M23(i,1)));

PM_To2 3(i,1) = PM_T2.3(i,1)*(1+((k—1)/2)*PMMI1(3,1)*PMMI
(3,1));

PM_p2.3(i,1) = PMpl(3,i)/(((2+(k—1)«xPM_M23(i,1)*xPM_-M2.3(i
,I)))/(2+4(k—1D«PMMI1(3,i)«PMMI(3,i))) " (k/(k—=1)));

PM_rho2_3(i,1) = PM_rhol (3,1)*((2+(k—1)«xPMMI1(3,i)+«PMMI(3,
i))/(2+4(k—1)«xPM_M2.3(i,1)«sPM_M23(i,1)))"(1/(k—=1));

end

s¢9 lambda = 21:1:80;

570
5711 959%

3.3 — Graficos
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figure (21)

handle2l=plot (lambda ,PM_M2_1(1,:), m’ ,lambda ,PM.M2_1(2,:), g’ ,
lambda ,PM_M2_1(3,:), r’ ,lambda ,PM_M2_1(4,:), b’ ,lambda,
PM.M2_1(5.,:), k")

set (handle21 , LineWidth’ ,1.5);

title (’Angulo de Declive x Numero de Mach M2 (Entrada M_.1 = 2)
)

ylabel ("Numero de Mach’);

xlabel ("Angulo de Declive 7);

legend (’theta = 14°,  theta = 16°, theta = 18°,  theta = 20°,”
theta = theta_m_a_x = 22.9705°);

grid on;

figure (22)

handle22=plot (lambda ,PM_M22(1,:), m’ ,lambda ,PM.M22(2,:), g’ ,
lambda ,PM_M22(3,:), r’ ,lambda ,PM_M22(4,:), b’ ,lambda,
PM M22(5,:), k");

set(handle22 , LineWidth  ,1.5);

title (’Angulo de Declive x Numero de Mach M2 (Entrada M_.1 = 3)
)

ylabel ("Numero de Mach’);

xlabel (" Angulo de Declive 7);

legend (’theta = 22°, theta = 25°, theta = 28°,  theta = 31°,°
theta = theta_m_a_x = 34.0716°);

grid on;

figure (23)

handle23=plot (lambda ,PM_M23(1,:), m’ ,lambda ,PM.M23(2,:), g’ ,
lambda ,PM_M23(3,:), r’ ,lambda ,PM_M23(4,:), b’ ,lambda,
PM M23(5,:), k");

set (handle23 , LineWidth’ ,1.5);

title (’Angulo de Declive x Numero de Mach M2 (Entrada M_.1 = 4)
")

ylabel ("Numero de Mach’);

xlabel (" Angulo de Declive 7);

legend (’theta = 27°,  theta = 30°,  theta = 33°,  theta = 36°,°
theta = theta_m_a_x = 38.7737);

grid on;
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figure (24)

handle24=plot (lambda ,PM_p2_1(1,:), m’ ,lambda,PM p2_1(2,:), g’ ,
lambda ,PM p2_1(3,:), r’ ,lambda,PM _p2_1(4,:), b’ ,lambda,
PM p2_1(5.,:), k")

set (handle24 , LineWidth’ ,1.5);

title (’Angulo de Declive x Pressao (Entrada M.1 = 2)7);

ylabel (*Pressao )3

xlabel (" Angulo de Declive 7);

legend (’theta = 14°, theta = 16°, theta = 18°,  theta = 20°,’
theta = theta_m_a_x = 22.97057);

grid on;

figure (25)

handle25=plot (lambda ,PM_p2_2(1,:), ' m’ ,lambda ,PM_p2.2(2,:), g’ ,
lambda ,PM _p2.2(3,:), r’  ,lambda,PM_p2.2(4,:), b’ ,lambda,
PM p2.2(5,:),k’);

set (handle25, LineWidth’ ,1.5);

title (’Angulo de Declive x Pressao (Entrada M.1 = 3)7);

ylabel (" Pressao 7);

xlabel (" Angulo de Declive ");

legend (’theta = 22’ ,  theta = 257, theta = 28’ , theta = 31°,°
theta = theta_m_a_x = 34.0716°);

grid on;

figure (26)

handle26=plot (lambda ,PM_p2 3(1,:), m’ ,lambda ,PM p2.3(2,:), g’ ,
lambda ,PM_p2.3(3,:), r’ ,lambda,PM_p2.3(4,:), b’ ,lambda,
PM p2.3(5.,:), k")

set (handle26 , ' LineWidth’ ,1.5);

title (" Angulo de Declive x Pressao (Entrada M.1 = 4)°);

ylabel (" Pressao 7);

xlabel ("Angulo de Declive ") ;

legend (’theta = 27°,  theta = 30°,  theta = 33°,  theta = 36°,°
theta = theta_m_a_x = 38.7737°);

grid on;

figure (27)
handle27=plot (lambda ,PM_T2_1(1,:), m’ ,lambda ,PM_T2_1(2,:), g’ ,
lambda ,PM_T2_1(3,:), r’ ,lambda ,PM_T2_1(4,:), b’ ,lambda,
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PM_T2_1(5,:),k’);
set (handle27 , LineWidth’ ,1.5);
title (" Angulo de Declive x Temperatura (Entrada M.1 = 2)7);
ylabel (" Temperatura );
xlabel (" Angulo de Declive 7);
legend (’theta = 14°,  theta = 16°,  theta = 18°,  theta = 20°,”
theta = theta_m_a_x = 22.9705°);

grid on;

figure (28)

handle28=plot (lambda ,PM_T2 2(1,:), ' m’ ,lambda ,PM_T2.2(2,:), ¢,
lambda ,PM_T2_2(3,:), r’ ,lambda ,PM_T2.2(4 ,:), b’ ,lambda,
PM_T2.2(5,:),’k’);

set (handle28 , "LineWidth’ ,1.5);

title (’Angulo de Declive x Temperatura (Entrada M.1 = 3)7);

ylabel (" Temperatura 7);

xlabel (" Angulo de Declive 7);

legend (’theta = 22°, theta = 25°, theta = 28°, theta = 31°,°
theta = theta_m_a_x = 34.0716°);

grid on;

figure (29)

handle29=plot (lambda ,PM_T2 3(1,:), m’ ,lambda ,PM_T2 3(2,:), g’ ,
lambda ,PM_T2_3(3,:),’r’  ,lambda ,PM_T2.3(4,:),’b’ ,lambda,
PM_T23(5,:), k’);

set (handle29 , LineWidth  ,1.5);

title (" Angulo de Declive x Temperatura (Entrada M_.1 = 4)’);

ylabel (" Temperatura 7);

xlabel (" Angulo de Declive 7);

legend (’theta = 27°,  theta = 30°,  theta = 33°,  theta = 36°,°
theta = theta_m_a_x = 38.7737);

grid on;

figure (210)

handle210=plot (lambda ,PM_To2_1(1,:), m’ ,lambda,PM_To2 1(2,:), ¢
*,lambda ,PM_To2_1(3,:), r’ ,lambda,PM_To2_1(4,:), b’ ,lambda,
PM_To2_1(5,:), k")

set (handle210 , LineWidth’ ,1.5);

title (" Angulo de Declive x Temperatura Estagnacao (Entrada M_1
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=2)7);
ylabel (" Temperatura );
xlabel ("Angulo de Declive 7);

legend (’theta = 14°,  theta = 16°,  theta = 18°,  theta

theta = theta_m_a_x = 22.9705°);
grid on;

figure (211)

207”

handle211=plot (lambda ,PM _To2 2(1,:), m’ ,lambda,PM_To2 2(2,:), ¢

*,lambda ,PM_To2_2(3,:), r’ ,lambda,PM_To2_.2(4,:), b’ ,lambda,

PM_To2.2(5,:),’k");
set (handle211 , LineWidth’ ,1.5);

title (" Angulo de Declive x Temperatura Estagnacao (Entrada M_1

=3)7);
ylabel (" Temperatura );
xlabel (" Angulo de Declive 7);

legend (’theta = 227, theta = 25°,  theta = 28,  theta

theta = theta_m_a_x = 34.0716");
grid on;

figure (212)

— 317’,

handle212=plot (lambda ,PM_To2 3(1,:), m’ ,lambda,PM_To2 3(2,:), ¢

*,lambda ,PM_To2_3(3,:), r’ ,lambda,PM_To2_.3(4,:), b’ ,lambda,

PM_To2.3(5,:),’k");
set (handle212 , LineWidth’ ,1.5);

title (" Angulo de Declive x Temperatura Estagnacao (Entrada M_1

= 4)7);
ylabel (" Temperatura 7);
xlabel (" Angulo de Declive 7);

legend (’theta = 27°,  theta = 30°,  theta = 33°,  theta

theta = theta_m_a_x = 38.7737°);
grid on;

figure (213)

— 367’,

handle213=plot (lambda,PM _rho2_1(1,:), m’ ,lambda,PM_rho2_1(2,:),
‘g’ ,lambda ,PM_rho2_1(3,:), r’ ,lambda,PM _rho2_1(4,:),’b",

lambda ,PM _rho2_1(5,:),’k’);
set (handle213 , LineWidth’ ,1.5);
title (" Angulo de Declive x Densidade (Entrada M_1

2)7);
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ylabel (" Densidade 7);

xlabel (" Angulo de Declive

legend (’theta = 147,  thet
theta = theta.m_a_x =

grid on;

figure (214)

)

a = 167, theta
22.9705);

18, theta

handle214=plot (lambda,PM _rho2_2(1,:), m’ ,lambda,PM_rho2 2(2,:),

"¢’ ,lambda ,PM_rho2 2 (3 ,:), r’ ,lambda,PM_rho2 2(4,:),b",

lambda ,PM_rho2_2(5,:),
set (handle214 , LineWidth’

title (’Angulo de Declive x Densidade (Entrada M_I

ylabel (" Densidade );

xlabel (" Angulo de Declive

legend ( theta = 227, thet
theta = theta_.m_a_x =

grid on;

figure (215)

k)
,1.5);

)

a = 25’ , theta

34.0716 ") ;

28’7, theta

handle215=plot (lambda ,PM _rho2 3 (1,:), m’ ,lambda,PM_rho2 3(2,:),

"¢’ ,lambda ,PM_rho2_3(3,:), r’ ,lambda,PM_rho2 3(4,:),’b",

lambda , PM_rho2_3(5,:),
set (handle215, LineWidth’

title (’Angulo de Declive x Densidade (Entrada M_I

ylabel (" Densidade °);

xlabel (" Angulo de Declive

legend (’theta = 277, thet
theta = theta_m_a_x =

grid on;

99% 3.4 — Caso Particular
EX3 M1 = EX1.M2;

EX3. Tl = EX1.T2;

EX3 pl EX1_p2;

EX3_rhol = EX1_rho2;

EX3 _difnu = 20;

cont = 1;
while EX3_ M1 > C(1,cont)

k)
,1.5);

)

a = 30°,  theta

38.7737 )

33’ ,’ theta
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cont = cont + 1;
end
parte21 = (EX3MI-C(1,cont—1))*(C(2,cont)—C(2,cont—1));
parte22 = C(1,cont)—C(1,cont—1);
EX3_nul = C(2,cont—1) + parte2l/parte2?2;

EX3_nu2 = EX3_nul + EX3_difnu;

cont = 1;

while EX3_nu2 > C(2,cont)
cont = cont + 1;

end

parte23 = (EX3_nu2-—C(2,cont—1))*(C(1,cont)—C(1,cont—1));

parte24 = C(2,cont)—C(2,cont —1);

EX3_M2 C(l,cont—1) + parte23/parte24;

EX3_T2 EX3_T1*((2+(k—1)xEX3_M1+EX3_M1)/(2+(k—1)*EX3_M2xEX3_M2
))

EX3.To2 = EX3.T2x(1+((k—1)/2)*EX3 M1+EX3_M1) ;

EX3 p2 = EX3 pl/(((2+(k—1)«*EX3 M2xEX3 M2)/(2+(k—1)*xEX3_M1x
EX3M1))"“(k/(k=1)));

EX3_rho2 = EX3_rhol x((2+(k—1)*EX3_M1+xEX3_M1)/(2+(k—1)xEX3_M2x
EX3M2))"(1/(k—1));

99% 4 — Rayleigh
99% 4.1 — Tabela de Rayleigh

Mmin = 1.02;
Mmax = 10;
inc2 = 0.02;

Maux = Mmin: inc?2 :Mmax;

for 1 = 1:450
psi = 1 + ((k—1)/2)xMaux(i)=*xMaux(1i);
YoTo/ Tox
aux26 = 2x(k+1)«Maux(i)*Maux(i)*psi;
(1+kxMaux (1i)*xMaux(i)) "2;
RF(1,i) = aux26/aux27;
9orho /rho x
aux28 = I+kxMaux(i)=«Maux(1);
aux29 = (k+1)*Maux(i)*Maux(i);
RF(2,1) = aux28/aux29;

aux27
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end

986%

for

90T | T
aux30 = (k+1)*(k+1)*xMaux(i)*Maux(1i);
RF(3,1) = aux30/aux27;

90Po / Po

aux31 (2/(k+1))*psi;

aux32 = aux31”°(k/(k—-1));

aux33 = (k+1)=*xaux32;

RF(4,1) = aux33/aux28§;

0P | P

RF(5,1) = (k+1)/aux28;

Jdelta s/Cpx

aux34 = RF(5,i) " ((k+1)/k);

aux35 = Maux(1i)*Maux(i)=*aux34;
RF(6,1)

log (aux35);

4.2 — Simulador

1=1:20

for 1=1:5

cont = 1;

while PM_M2_1(i,1) > Maux(cont)
cont = cont + 1;

end

aux36 = (PM_M2_1(i,1)—Maux(cont—1))*(RF(1,cont)—RF(1,cont
—-1);

aux37 = Maux(cont)—Maux(cont —1);

RF_rTol_1(i1,1) = RF(1,cont—1)+(aux36/aux37);

aux38 = (PM_M2_1(i,1)—Maux(cont—1))*(RF(2,cont)—RF(2,cont
D)

aux39 = Maux(cont)—Maux(cont —1);

RF_rrhol_1(i,1) = RF(2,cont—1)+(aux38/aux39);

aux40 = (PM_M2_1(i,1)—Maux(cont—1))*(RF(3,cont)—RF(3,cont
-1));

aux41 = Maux(cont)—Maux(cont —1);

RF_rT1_1(i,1) = RF(3,cont—1)+(aux40/aux4l);

aux42 = (PM_M2_1(i,1)—Maux(cont—1))*(RF(4,cont)—RF(4,cont
-1));

aux43 = Maux(cont)—Maux(cont —1);

RF_rPol_1(i,1) = RF(4,cont—1)+(aux42/aux43);
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end

for

end

for

aux44 = (PM_M2_1(i,1)—Maux(cont—1))*(RF(5,cont)—RF(5,cont
—1));

aux45 = Maux(cont)—Maux(cont —1);
RF_rP1_1(i,1) = RF(5,cont—1)+(aux44/aux45);

end
i =1:5
for 1 = 1:20

cont = 1;

while PM_M2_1(i,1) > Maux(cont)

cont = cont + 1;

end

aux46 = (PM_M2.2(i,l)—Maux(cont—1))*(RF(1,cont)—RF(1,cont

—-1);

aux47 = Maux(cont)—Maux(cont —1);

RF_rTol_2(i,1) = RF(1,cont—1)+(aux46/aux47);

aux48 = (PM_M22(i,l)—Maux(cont—1))*(RF(2,cont)—RF(2,cont
-1

aux49 = Maux(cont)—Maux(cont —1);

RF_rrhol_2(i,1) = RF(2,cont—1)+(aux48/aux49);

aux50 = (PM_M22(i,l)—Maux(cont—1))*(RF(3,cont)—RF(3,cont
-D);

aux51 = Maux(cont)—Maux(cont —1);

RF_rT1.2(i,1) = RF(3,cont—1)+(aux50/aux51);

aux52 = (PM_M22(i,l)—Maux(cont—1))=*(RF(4,cont)—RF(4,cont
—-1));

aux53 = Maux(cont)—Maux(cont —1);

RF_rPol_2(i,1) = RF(4,cont—1)+(aux52/aux53);

aux54 = (PM_M2.2(i,l)—Maux(cont —1))*(RF(5,cont)—RF(5,cont
-1

aux55 = Maux(cont)—Maux(cont —1);

RF_rP1_2(i,1) = RF(5,cont—1)+(aux54/aux55);

end

i =1:5

for 1 = 1:20
cont = 1;
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end

986%

for

while PM_M2_1(i,1) > Maux(cont)

cont = cont + 1;
end
aux56 = (PM_M2.23(i,l)~Maux(cont—1))=*(RF(1,cont)—RF(1,cont
—-1));

aux57 = Maux(cont)—Maux(cont —1);

RF_rTol_3(i,1) = RF(1,cont—1)+(aux56/aux57);

aux58 = (PM_M23(i,1)—Maux(cont—1))*(RF(2,cont)—RF(2,cont
—-1));

aux59 = Maux(cont)—Maux(cont —1);

RF_rrhol_3(i,1) = RF(2,cont—1)+(aux58/aux59);

aux60 = (PM_M2.3(i,l)—Maux(cont—1))*(RF(3,cont)—RF(3,cont
-1);

aux61 = Maux(cont)—Maux(cont —1);

RF_rT1.3(i,1) = RF(3,cont—1)+(aux40/aux41);

aux62 = (PM_M23(i,l)—Maux(cont—1))=*(RF(4,cont)—RF(4,cont
-1));

aux63 = Maux(cont)—Maux(cont —1);

RF_rPol1_3(i,1) = RF(4,cont—1)+(aux62/aux63);

aux64 = (PM_M23(i,1)—Maux(cont—1))*(RF(5,cont)—RF(5,cont
-1));

aux65 = Maux(cont)—Maux(cont —1);

RF_rP1_3(i,1) = RF(5,cont—1)+(aux64/aux65);

end

4.3 — Calculo do Cp

i = 1:5

for 1 = 1:20

TH.T2_1(i,1) PM_T2_1(i,1)/1000;

TH.T2.2(i,1) PM_T2_1(i,1)/1000;

TH_ T2 3(i,1) PM_T2 1(i,1)/1000;

Cp_1(i,l) = CpO+C pl«TH. T2 1(i,1)+C_p2«xTH. T2 1(i,1)" 2+
Cp3«xTH.T2_1(i,1)"3;

Cp2(i,l) = CpO+C_pl«TH. T2 2(i,1)+C_p2xTH. T2 2(i,1)"2+
C_p3«xTH. T2 2(i,1)"3;

Cp3(i,l) = C.p0+C_pl«TH_-T2.3(i,1)+C_p2xTH_-T2.3(i,1)"2+
C_p3«xTH.T2.3(i,1)"3;

end
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end

9%

for

end

9%

for

end

Yo/l

for

4.4 — Calculo da Combustao
i =1:5

for 1 = 1:20
RF_To2_1(i,1)

((r_fuel_airxH.v)/Cp_1(i,1)) + PM_To2_ 1(i,1

)

RF_To2 2(i,1) = ((r_fuel_air«xH.v)/Cp.2(i,1)) + PM_To2 2(i, 1
)

RF_To2 3(1i,1) = ((r_fuel_air«H.v)/Cp3(1,1)) + PM_To2 3(1,1
)

end

4.5 — Calculo do To2/Tox
i =1:5

for 1 = 1:20
RF_rTo2_1(i,1)

(RF_-To2_1(i,1)/PM_To2_1(i,1))*RF_rTol_1(i1

1)
RF_rTo2_2(i,1) = (RF_.To2_2(i,1)/PM_To2.2(i,1))*xRF_rTol_2(i
1)
RF_rTo2_3(i,1) = (RF.To2.3(i,1)/PM_To2.3(i,1))*RF_rTol_3(i
1)
end
4.6 — Calculo das outras propriedades
i =1:5
for 1 = 1:20
cont = 1;
while RF_rTo2_1(i,1) < RF(1,cont)
cont = cont + 1;
end
aux66 = (RF_rTo2_1(i,1)-RF(1,cont—1))*(Maux(cont)—Maux(cont
-1));

aux67 = RF(1,cont)—RF(1,cont—1);

RF_M2_1(i,1) = Maux(cont—1)+(aux66/aux67);

aux68 = (RF_rTo2_1(i,1)—RF(1,cont—1))*(RF(2,cont)—RF(2,cont
—1));
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end

for

aux69 = RF(1,cont)—RF(1,cont—1);

RF_rrho2_1(i,1) = RF(2,cont—1)+(aux68/aux69);

aux70 = (RF_rTo2_1(i,1)—RF(1,cont—1))*(RF(3,cont)—RF(3,cont
-1));

aux71 = RF(1,cont)—RF(1,cont—1);

RF_rT2_1(i,1) = RF(3,cont—1)+(aux70/aux71);

aux72 = (RF_rTo2_1(i,1)-RF(1,cont—1))*(RF(4,cont)—RF(4,cont
-1));

aux73 = RF(1,cont)—RF(1,cont—1);

RF_rPo2_1(i,1) = RF(4,cont—1)+(aux72/aux73);

aux74 = (RF_rTo2_1(i,1)-RF(1,cont—1))*(RF(5,cont)—RF(5, cont
-D);

aux75 = RF(1,cont)—RF(1,cont—1);

RF_rP2_1(i1,1) = RF(5,cont—1)+(aux74/aux75);

end
1 = 1:5
for 1 = 1:20

cont = 1;

while RF_rTo2_2(i,1) < RF(1,cont)

cont = cont + 1;

end

aux66 = (RF_rTo2_2(i,1)-RF(1,cont—1))*(Maux(cont)—Maux(cont
—-1);

aux67 = RF(1,cont)—RF(1,cont—1);

RF_M2_2(i,1) = Maux(cont —1)+(aux66/aux67);

aux68 = (RF_rTo2_2(i,1)—RF(1,cont—1))*(RF(2,cont)—RF(2,cont
D)

aux69 = RF(1,cont)—RF(1,cont—1);

RF_rrho2_2(i,1) = RF(2,cont—1)+(aux68/aux69);

aux70 = (RF_rTo2_2(i,1)—RF(1,cont—1))*(RF(3,cont)—RF(3,cont
—-1);

aux71 = RF(1,cont)—RF(1,cont—1);

RF_rT2.2(i,1) = RF(3,cont—1)+(aux70/aux71);

aux72 = (RF_rTo2_2(i,1)—RF(1,cont—1))*(RF(4,cont)—RF(4,cont
1)

aux73 = RF(1,cont)—RF(1,cont—1);

RF_rPo2_2(i,1) = RF(4,cont—1)+(aux72/aux73);



914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

Apéndice A. Simulagdo do MATLAB

82

end

for

end

for

aux74 = (RF_rTo2_2(i,1)-RF(1,cont—1))*(RF(5,cont)—RF(5, cont

—1));
aux75 = RF(1,cont)—RF(1,cont—1);
RF_rP2_2(i,1) = RF(5,cont—1)+(aux74/aux75);

end

i =1:5
for 1 = 1:20
cont = 1;
while RF_rTo2_3(i,1) < RF(1,cont)
cont = cont + 1;
end

aux66 = (RF_rTo2_3(i,1)—-RF(1,cont—1))*(Maux(cont)—Maux(cont

—1));
aux67 = RF(1,cont)—RF(1,cont—1);
RFM23(i,1) = Maux(cont —1)+(aux66/aux67);

aux68 = (RF_rTo2_3(i,1)—RF(1,cont—1))*(RF(2,cont)—RF(2,cont

—-D);
aux69 = RF(1,cont)—RF(1,cont—1);

RF_rrho2_3(i,1) = RF(2,cont—1)+(aux68/aux69);

aux70 = (RF_rTo2_3(i,1)—RF(1,cont—1))*(RF(3,cont)—RF(3,cont

—-1);
aux71 = RF(1,cont)—RF(1,cont—1);
RF_rT2_3(i,1) = RF(3,cont—1)+(aux70/aux71);

aux72 = (RF_.rTo2_3(i,1)—RF(1,cont—1))*(RF(4,cont)—RF(4,cont

sk
aux73 = RF(1,cont)—RF(1,cont—1);

RF_rPo2_3(i,1) = RF(4,cont—1)+(aux72/aux73);

aux74 = (RF_.rTo2_3(i,1)—RF(1,cont—1))*(RF(5,cont)—RF(5,cont

—-1);
aux75 = RF(1,cont)—RF(1,cont—1);
RF_rP2_3(i,1) RF(5,cont —1)+(aux74/aux75);

end

1 = 1:5

for 1 = 1:20
RF_rho2_1(i,1)

(RF_rrho2_1(i,1)*xPM_rho2_1(i,1))/RF_rrhol_1
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(i,1);
RF P2 1(i,1) = (RF_rP2_1(i,1)xPM_p2_1(i,1))/RF_rP1_1(i,1);
RF_T2_1(i,1) = (RF_rT2_1(i,1)*PM_T2_1(i,1))/RF_rT1_1(i,1);
RF_rho2_2(i,1) = (RF_rrho2_2(i,1)*PM_rho2_2(i,1))/RF_rrhol_2
(i,1);
RF P2 2(i,1) = (RF.rP2.2(i,1)xPM_p2 2(i,1))/RF_rP1_2(i,1);
RF. T2 2(i,1) = (RF_rT2.2(i,1)«*PM_T2.2(i,1))/RF_rT1.2(i,1);
RF_rho2_3(i,1) = (RF_rrho2_3(i,1)*xPM_rho2_3(i,1))/RF_rrhol_3
(i,1);
RF P2 3(i,1) = (RF.rP2.3(i,1)«xPM p23(i,1))/RF_rP1.3(i,1);
RF_.T2.3(i,1) = (RF_rT2_3(i,1)*PM_T2.3(i,1))/RF_rT1.3(i,1);
end
end
99% 4.7 — Graficos

figure (31)

handle31=plot (lambl ,RF-M2_1(1,:), m’ ,lambl ,RF-M2_1(2,:), g’ ,
lambl ,RF-M2_1(3,:), r  ,lambl ,RF-M2_1(4,:), b’ ,lambl ,RF.M2_1
(5,:1), k")

set (handle31 , LineWidth’ ,1.5);

title (’Angulo de Declive x Numero de Mach M2 (Entrada M.1 = 2)
)

ylabel ("Numero de Mach’);

xlabel (" Angulo de Declive 7);

legend (’theta = 14°, theta = 16°, theta = 18°,  theta = 20’ ,’
theta = theta_m_a_x = 22.97057);

grid on;

figure (32)

handle32=plot (lamb2 ,RF-M2_2(1,:), m’ ,lamb2 ,RF-M2.2(2,:), g’ ,
lamb2 ,RF-M2 2(3,:), r’ ,lamb2 ,RF-M2.2(4,:), b’ ,lamb2 ,RF_M2_2
(5,:1),7k");

set (handle32 , LineWidth’ ,1.5);

title (’Angulo de Declive x Numero de Mach M2 (Entrada M_.1 = 3)
)

ylabel ("Numero de Mach’);

xlabel (" Angulo de Declive 7);

legend (’theta = 22°, theta = 25°, theta = 28°,  theta = 31°,°
theta = theta_m_a_x = 34.0716");
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grid on;

figure (33)

handle33=plot (lamb3 ,RF-M2.3(1,:), m’ ,lamb3 ,RF-M2.3(2,:), g’ ,
lamb3 ,RF- M2 3(3,:), r’ ,lamb3 ,RF-M2.3(4,:), b’ ,lamb3 ,RF_M2_3
(5,:1),7k");

set (handle33, LineWidth  ,1.5);

title (’Angulo de Declive x NUmero de Mach M2 (Entrada M_.1 = 4)
)

ylabel ("Numero de Mach’);

xlabel ("Angulo de Declive 7);

legend (’theta = 27°, theta = 30°,  theta = 33°,  theta = 36°,°
theta = theta_m_a_x = 38.7737’);

grid on;

figure (34)

handle34=plot (lambl ,RF_-P2_1(1,:), m’ ,lambl ,RF_P2_1(2,:),’¢g",
lambl ,RF_P2_1(3,:), r  ,lambl ,RF_P2_1(4,:), b’ ,lambl ,RF_P2_1
(5,:1),7k");

set (handle34 , LineWidth’ ,1.5);

title (’Angulo de Declive x Pressao (Entrada M.1 = 2)7);

ylabel (’Pressao 7);

xlabel (" Angulo de Declive 7);

legend (’theta = 14°,  theta = 16°,  theta = 18°,  theta = 20°,”
theta = theta_m_a_x = 22.9705°);

grid on;

figure (35)

handle35=plot (lamb2 ,RF P2 2(1,:), m’ ,lamb2 ,RF_ P2 .2(2,:), ¢’ ,
lamb2 ,RF_P2.2(3,:), r  ,lamb2 ,RF_P2.2(4,:), b’ ,lamb2 ,RF_P2_2
(5,:), k")

set (handle35, LineWidth’ ,1.5);

title (’Angulo de Declive x Pressao (Entrada M.1 = 3)7);

ylabel (" Pressao’);

xlabel ("Angulo de Declive 7);

legend (’theta = 22°, theta = 25°,  theta = 28°,  theta = 31°,”
theta = theta_m_a_x = 34.0716°);

grid on;
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figure (36)

handle36=plot (lamb3 ,RF_P2 3(1,:), m’ ,lamb3 ,RF_P2.3(2,:), ¢,
lamb3 ,RF_P2_3(3,:), r’ ,lamb3 ,RF_P2_3(4,:), b’ ,lamb3 ,RF_P2_3
(5,:), k")

set (handle36 , LineWidth’ ,1.5);

title (’Angulo de Declive x Pressao (Entrada M.1 = 4)°);

ylabel (*Pressao) ’);

xlabel (" Angulo de Declive 7);

legend (’theta = 27°, theta = 30°,  theta = 33°,  theta = 36°,°
theta = theta_m_a_x = 38.7737’);

grid on;

figure (37)

handle37=plot (lambl ,RF_-T2_1(1,:), m’ ,lambl ,RF.T2_1(2,:),’¢g",
lambl ,RF_T2_1(3,:), r  ,lambl ,RF.T2_1(4,:), b’ ,lambl ,RF_T2_1
(5,1),7k");

set (handle37 , LineWidth’ ,1.5);

title (’Angulo de Declive x Temperatura (Entrada M.1 = 2)’°);

ylabel (" Temperatura 7);

xlabel (" Angulo de Declive 7);

legend (’theta = 14’ ,  theta = 16°,  theta = 18,  theta = 20°,°
theta = theta_m_a_x = 22.97057);

grid on;

figure (38)

handle38=plot (lamb2 ,RF_T2 2(1,:), ' m’ ,lamb2 ,RF.T2.2(2,:), g’ ,
lamb2 ,RF_-T2.2(3,:), r’ ,lamb2 ,RF.T2.2(4,:), b’ ,lamb2 ,RF_T2_2
(5,:), k")

set (handle38 , "LineWidth’ ,1.5);

title (’Angulo de Declive x Temperatura (Entrada M_.1 = 3)’);

ylabel (" Temperatura 7);

xlabel (" Angulo de Declive 7);

legend (’theta = 22°, theta = 25°, theta = 28°,  theta = 31°,°
theta = theta_m_a_x = 34.0716°);

grid on;

figure (39)
handle39=plot (lamb3 ,RF_ T2 3(1,:), m’ ,lamb3 ,RF.T2.3(2,:),’¢g",
lamb3 ,RF_T2_3(3,:), r’ ,lamb3 ,RF_T2_3(4,:), b’ ,lamb3 ,RF_T2_3
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(5.,:),°k7);
set (handle39 , LineWidth’ ,1.5);

title (" Angulo de Declive x Temperatura (Entrada M_1

ylabel (" Temperatura 7);
xlabel (" Angulo de Declive 7);

legend (’theta = 27°, theta = 30°,  theta = 33,  theta

theta = theta_m_a_x = 38.7737);

grid on;

figure (310)

36’,’

handle310=plot(lambl ,RF_To2_1(1,:), m’,lambl ,RF_To2_1(2,:), g ,
lambl ,RF_To2_1(3,:), r’  ,lambl ,RF_To2_1(4,:), b’ ,lambl ,

RF_To2_1(5,:), k");
set (handle310 , LineWidth’ ,1.5);

title (’Angulo de Declive x Temperatura Estagnacao (Entrada M_I

= 2)7);
ylabel (" Temperatura );
xlabel (" Angulo de Declive 7);

legend (’theta = 14°, theta = 16°, theta = 18°, theta

theta = theta_m_a_x = 22.97057);

grid on;

figure (311)

205,’

handle311=plot(lamb2 ,RF_-To2_2(1,:), ' m’ ,lamb2 ,RF_To2.2(2,:), ¢,
lamb2 ,RF_To2_2(3,:), r’  ,lamb2 ,RF_To2_2(4,:), b’ ,lamb2,

RF_To2 2(5,:),’k’);
set (handle311 , LineWidth’ ,1.5);

title (’Angulo de Declive x Temperatura Estagnacao (Entrada M_I

=3)7);
ylabel (" Temperatura );
xlabel (" Angulo de Declive 7);

legend (’theta = 22°, theta = 25°, theta = 28,  theta

theta = theta_m_a_x = 34.0716");

grid on;

figure (312)

315,’

handle312=plot(lamb3 ,RF_-To2_3(1,:), m’ ,lamb3 ,RF_To2.3(2,:), ¢,
lamb3 ,RF_To2_3(3,:), r’  ,lamb3 ,RF_To2_3(4,:), b’ ,lamb3,

RF_To2.3(5,:),k");
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set (handle312 , LineWidth’ ,1.5);

title (’Angulo de Declive x Temperatura Estagnacao (Entrada M_I
=4)7);

ylabel (" Temperatura 7);

xlabel (" Angulo de Declive 7);

legend (’theta = 27°,  theta = 30°,  theta = 33°,  theta = 36°,°
theta = theta_m_a_x = 38.7737);

grid on;

figure (313)

handle313=plot(lambl ,RF_rho2_1(1,:), m’,lambl ,RF_rho2_1(2,:), ¢
> ,lambl ,RF_rho2_1(3,:), r’ ,lambl ,RF_rho2_1(4,:), b’ ,lambl ,
RF_rho2_1(5,:),’k");

set (handle313 , LineWidth’ ,1.5);

title (’Angulo de Declive x Densidade (Entrada M.1 = 2)’);

ylabel (" Densidade 7);

xlabel (" Angulo de Declive 7);

legend (’theta = 14°, theta = 16°, theta = 18°,  theta = 20’ ,’
theta = theta_m_a_x = 22.97057);

grid on;

figure (314)

handle314=plot (lamb2,RF_rho2_2(1,:), m’ ,lamb2,RF_rho2 2(2,:), ¢
> ,lamb2 ,RF_rho2_2(3,:), r’ ,lamb2,RF_rho2_2(4,:), b’ ,lamb2,
RF_rho2_2(5,:),’k’);

set (handle314 , LineWidth’ ,1.5);

title (" Angulo de Declive x Densidade (Entrada M.1 = 3)’);

ylabel (" Densidade 7);

xlabel ("Angulo de Declive ") ;

legend (’theta = 22°, theta = 25°,  theta = 28°,  theta = 31°,°
theta = theta_m_a_x = 34.0716°);

grid on;

figure (315)

handle315=plot (lamb3 ,RF_rho2_3(1,:), m’ ,lamb3,RF_rho2 3(2,:), ¢
> ,lamb3 ,RF_rho2_3(3,:), r’ ,lamb3,RF_rho2_3(4,:), b’ ,lamb3,
RF_rho2_3(5,:),k’);

set (handle315, LineWidth’ ,1.5);

title (’Angulo de Declive x Densidade (Entrada M.1 = 4)’);
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ylabel (" Densidade 7);

xlabel (" Angulo de Declive 7);

legend ( theta = 277, theta = 307, theta
theta = theta_m_a_x = 38.7737°);

grid on;

(O]

33’ ,’ theta = 367 ,°

99% 4.8 — Caso Particular

EX4 M1 = 1.5;

EX4 pl = 68;

EX4_.T1 = 222;

EX4 q = 11.5;

EX4 _Tol = EX4_TIx(14+0.5%x(k—1)*xEX4 M1+xEX4_M1) ;

EX4 Pol = EX4 pl*x(1+0.5%x(k—1)xEX4 MI1+EX4 M1) "(k/(k—1));

cont = 1;

while EX4_M1 > Maux(cont)
cont = cont + 1;

end

parte25 = (EX4 MI-Maux(cont —1))*(RF(1,cont)—RF(1,cont—1));
parte26 = Maux(cont)—Maux(cont—1);

EX4 rTol = RF(1,cont—1)+(parte25/parte26);

parte27 = (EX4 MI-Maux(cont—1))*(RF(2,cont)—RF(2,cont—1));
parte28 = Maux(cont)—Maux(cont—1);

EX4 _rrhol = RF(2,cont—1)+(parte27/parte28);

parte29 = (EX4 MI-Maux(cont—1))*(RF(3,cont)—RF(3,cont—1));

parte30 = Maux(cont)—Maux(cont—1);

EX4_rT1 = RF(3,cont—1)+(parte29/parte30);

parte31l = (EX4 MI-Maux(cont—1))*(RF(4,cont)—RF(4,cont—1));
parte32 = Maux(cont)—Maux(cont—1);

EX4_rPol = RF(4,cont—1)+(parte31/parte32);

parte33 = (EX4 MI-Maux(cont —1))*(RF(5,cont)—RF(5,cont—1));
parte34 = Maux(cont)—Maux(cont—1);

EX4_rP1 = RF(5,cont—1)+(parte33/parte34);

9% 4.3 — Calculo do Cp
EX4_TH EX4_T1/1000;
EX4 _Cp C_p0+C_pl1*EX4_TH+C_p2+xEX4 TH"2+C_p3+EX4.TH"3;

%% 4.4 — Calculo da Combustao
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EX4 To2 = (EX4_q/EX4 Cp) + EX4 Tol;

99%% 4.5 — Calculo do To2/Tox
EX4_rTo2 = (EX4_To2/EX4_Tol)*EX4_rTol;

cont = 1;
while EX4 _rTo2 < RF(1,cont)
cont = cont + 1;
end
parte35 = (EX4_rTo2—RF(1,cont—1))*(Maux(cont)—Maux(cont—1));

parte36 = RF(1,cont)—RF(1,cont—1);

EX4 M2 = Maux(cont —1)+(parte35/parte36);

parte37 = (EX4_rTo2—RF(1,cont—1))*(RF(2,cont)—RF(2,cont—1));
parte38 RF(1,cont)—RF(1,cont—1);

EX4 _rrho2 = RF(2,cont—1)+(parte37/parte38);

parte39 = (EX4_rTo2—RF(1,cont—1))*(RF(3,cont)—RF(3,cont—1));
parte40 = RF(1,cont)—RF(1,cont—1);

EX4_rT2 = RF(3,cont—1)+(parte39/parted0);

parte4l = (EX4_rTo2—RF(1,cont—1))*(RF(4,cont)—RF(4,cont—1));
parte42 = RF(1,cont)—RF(1,cont—1);

EX4 rPo2 = RF(4,cont—1)+(parted4l/parted?2);

parte43 = (EX4_rTo2—RF(1,cont—1))*(RF(5,cont)—RF(5,cont—1));
parte44 = RF(1,cont)—RF(1,cont—1);

EX4_rP2 = RF(5,cont—1)+(parted43/parted4d);

EX4 p2 = (EX4_rP2+xEX4 pl)/EX4 _rP1;

EX4.T2 = (EX4_rT2xEX4_T1)/EX4_rT1;

99% 5 — Bocal
99% 5.1 — Simulador
for 1=1:20
for 1=1:5
BCMI1_1(1,1)
BC.M1.2(1,1)
BC M1.3(1,1)

end

REM2 1(1,i);
RE.M22(1,i);
RF.M2.3(1,i);

end

for 1=1:20
for 1=1:5
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end

for

cont = 100;

while BC_.M1_1(1,1i) > IFT(1,cont)
cont = cont + 1;

end

aux76 = (BCM1_1(1,1)—IFT(1,cont—1))*(IFT(2,cont)—IFT (2,
cont—1));

aux77 = IFT(1,cont)—IFT(1,cont—1);

BC_rTol_1(1,1) = IFT(2,cont—1) + aux76/aux77;

aux76 = (BCM1_1(1,1)—IFT(1,cont—1))*(IFT(3,cont)—IFT (3,
cont —1));

aux77 = IFT(1,cont)—IFT(1,cont—1);

BC_rPol_1(l1,1) = IFT(3,cont—1) + aux76/aux77;

aux76 = (BCM1_1(1,1)—IFT(1,cont—1))*(IFT(4,cont)—IFT (4,
cont—1));

aux77 = IFT(1,cont)—IFT(1,cont—1);

BC_rrhol_1(1,1) = IFT(4,cont—1) + aux76/aux77;

aux76 = (BCM1_1(1,1)—IFT(1,cont—1))*(IFT(5,cont)—IFT(5,
cont—1));

aux77 = IFT(1,cont)—IFT(1,cont—1);

BC_rAl_1(1,1) = IFT(5,cont—1) + aux76/aux77;

end

i=1:20
for 1=1:5
cont = 100;
while BC.M1.2(1,1i) > IFT(1,cont)
cont = cont + 1;
end
aux76 = (BCM12(1,1)-IFT(1,cont—1))*(IFT(2,cont)—IFT (2,
cont—1));

aux77 = IFT(1,cont)—IFT(1,cont—1);

BC.rTol 2(1,i) = IFT(2,cont—1) + aux76/aux77;

aux76 = (BCM12(1,1)-IFT(1,cont—1))*(IFT(3,cont)—IFT (3,
cont—1));

aux77 = IFT(1,cont)—IFT(1,cont—1);

BC_rPol1_2(1,1i) = IFT(3,cont—1) + aux76/aux77;

aux76 = (BCM12(1,1i)—IFT(1,cont—1))*(IFT(4,cont)—IFT (4,
cont—1));
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1198 aux77 = IFT(1,cont)—IFT(1,cont—1);

1199 BC_rrhol_2(1,1i) = IFT(4,cont—1) + aux76/aux77;

1200 aux76 = (BCM12(1,1)—IFT(1,cont—1))*(IFT(5,cont)—IFT (5,
cont—1));

1201 aux77 = IFT(1,cont)—IFT(1,cont—1);

1202 BC.rA1.2(1,1i) = IFT(5,cont—1) + aux76/aux77;

1203 end

1204 end

1205

1206 for 1=1:20

1207 for 1=1:5

1208 cont = 100;

1209 while BC.M1.3(1,1) > IFT(1,cont)

1210 cont = cont + 1;

1211 end

1212 aux76 = (BCM1.3(1,1)—IFT(1,cont—1))*(IFT(2,cont)—IFT (2,
cont—1));

1213 aux77 = IFT(1,cont)—IFT(1,cont—1);

1214 BC_rTol 3(1,i) = IFT(2,cont—1) + aux76/aux77;

1215 aux76 = (BCM1.3(1,1)-IFT(1,cont—1))*(IFT(3,cont)—IFT (3,
cont—1));

1216 aux77 = IFT(1,cont)—IFT(1,cont—1);

1217 BC_rPol1.3(1,1i) = IFT(3,cont—1) + aux76/aux77;

1218 aux76 = (BCM1.3(1,1)-IFT(1,cont—1))*(IFT(4,cont)—IFT (4,
cont—1));

1219 aux77 = IFT(1,cont)—IFT(1,cont—1);

1220 BC_rrhol1_3(1,1) = IFT(4,cont—1) + aux76/aux77;

1221 aux76 = (BC.M1.3(1,1)—IFT(1,cont—1))*(IFT(5,cont)—IFT (5,
cont—1));

1222 aux77 = IFT(1,cont)—IFT(1,cont—1);

1223 BC_rA1.3(1,1) = IFT(5,cont—1) + aux76/aux77;

1224 end

1225 end

1226

1221 99% 5.2 — Saida da Variacao de Area
1228 for 1=1:20

1229 for 1=1:5
1230 BC.rA2_1(1,1)
1231 BC.rA2.2(1,1)

rBxBC_rA1_1(1,1);
rBxBC_rA1.2(1,1);
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1232 BC_rA2.3(1,1) = rBxBC_rA1_3(1,1);

1233 end

1234 end

1235

1236 for 1=1:20

1237 for 1=1:5

1238 cont = 100;

1239 while BC_.rA2_1(1,1) > IFT(5,cont)

1240 cont = cont + 1;

1241 end

1242 aux76 = (BC_rA2_1(5,1)—IFT(5,cont—1))*(IFT(2,cont)—IFT (2,
cont—1));

1243 aux77 = IFT(5,cont)—IFT(5,cont—1);

1244 BC_rTo2_1(1,1) = IFT(2,cont—1) + aux76/aux77;

1245 aux76 = (BC_.rA2_1(1,1)—IFT(5,cont—1))*(IFT(3,cont)—IFT (3,
cont—1));

1246 aux77 = IFT(5,cont)—IFT(5,cont—1);

1247 BC_rPo2_1(1,1) = IFT(3,cont—1) + aux76/aux77;

1248 aux76 = (BC_.rA2_1(1,1)—IFT(5,cont—1))*(IFT(4,cont)—IFT (4,
cont—1));

1249 aux77 = IFT(5,cont)—IFT(5,cont—1);

1250 BC_rrho2_1(1,1) = IFT(4,cont—1) + aux76/aux77;

1251 aux76 = (BC_.rA2_1(1,1)—IFT(5,cont—1))*(IFT(1,cont)—IFT (1,
cont—1));

1252 aux77 = IFT(5,cont)—IFT(5,cont—1);

1253 BCM2_1(1,1i) = IFT(1,cont—1) + aux76/aux77;

1254 end

1255 end

1256

1257 for 1=1:20

1258 for 1=1:5

1259 cont = 100;

1260 while BC_rA2_2(1,i) > IFT(5,cont)

1261 cont = cont + 1;

1262 end

1263 aux76 = (BC_.rA2_2(5,1)—IFT(5,cont—1))*(IFT(2,cont)—IFT (2,
cont—1));

1264 aux77 = IFT(5,cont)—IFT(5,cont—1);

1265 BC_rTo2.2(1,i) = IFT(2,cont—1) + aux76/aux77;
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1266 aux76 = (BC_rA2_2(1,1)—IFT(5,cont—1))*(IFT(3,cont)—IFT (3,
cont—1));

1267 aux77 = IFT(5,cont)—IFT(5,cont—1);

1268 BC_rPo2_2(1,1i) = IFT(3,cont—1) + aux76/aux77;

1269 aux76 = (BC_.rA2_2(1,1)—IFT(5,cont—1))*(IFT(4,cont)—IFT (4,
cont—1));

1270 aux77 = IFT(5,cont)—IFT(5,cont—1);

1271 BC_rrho2_2(1,1) = IFT(4,cont—1) + aux76/aux77;

1272 aux76 = (BC_.rA2_2(1,1)—IFT(5,cont—1))*(IFT(1,cont)—IFT (1,
cont —1));

1273 aux77 = IFT(5,cont)—IFT(5,cont—1);

1274 BCM22(l,i) = IFT(1,cont—1) + aux76/aux77;

1275 end

1276 end

1277

1278 for 1=1:20

1279 for 1=1:5

1280 cont = 100;

1281 while BC_rA2_3(1,1i) > IFT(5,cont)

1282 cont = cont + 1;

1283 end

1284 aux76 = (BC_.rA2.3(5,1)—IFT(5,cont—1))*(IFT(2,cont)—IFT (2,
cont—1));

1285 aux77 = IFT(5,cont)—IFT(5,cont—1);

1286 BC_rTo2_3(1,i) = IFT(2,cont—1) + aux76/aux77;

1287 aux76 = (BC_.rA2.3(1,1)—IFT(5,cont—1))*(IFT(3,cont)—IFT (3,
cont—1));

1288 aux77 = IFT(5,cont)—IFT(5,cont—1);

1289 BC_rPo2_3(1,i) = IFT(3,cont—1) + aux76/aux77;

1290 aux76 = (BC_rA2.3(1,1)—-IFT(5,cont—1))*(IFT(4,cont)—IFT (4,
cont—1));

1291 aux77 = IFT(5,cont)—IFT(5,cont—1);

1292 BC_rrho2_3(1,1) = IFT(4,cont—1) + aux76/aux77;

1293 aux76 = (BC_rA2_3(1,1)—IFT(5,cont—1))*(IFT(1,cont)—IFT (1,
cont—1));

1294 aux77 = IFT(5,cont)—IFT(5,cont—1);

1295 BC.M23(1,i) = IFT(1,cont—1) + aux76/aux77;

1296 end

1297 end
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for 1=1:20
for 1=1:5
BC.p2_1(1,i) = RF_.P2_1(1,i)*x(BC_rPo2_1(1,i1)/BC_rPol_1(1
s1))5
BC_To2_1(1,i) = RF_.To2_1(1,i)*(BC_rTo2_1(1,1)/BC_rTol_1
(l,1));
BC_rho2_1(1,i) = RF_rho2_1(1,i)*(BC_rrho2_1(1,1)/
BC_rrhol_1(1,1));
BC_T2_1(1,i) = BC_To2_1(1,i)/(140.5%x(k—1)xBC_M2_1(1,1)x
BC.M2_1(1,1));
BC p22(1,i) = RF.P2.2(1,i)*(BC_rPo2.2(1,i)/BC_rPol_2(1
s1)) 3
BC_To2 2(1,i) = RF_.To2_2(1,i)*(BC_rTo2_2(1,i)/BC_rTol_2
(1,1))3
BC_rho2 2(1,i) = RF_rho2 2(1,i)*x(BC_rrho2_2(1,1)/
BC_rrhol_2(1,1));
BC.T2.2(1,i) = BC_To2.2(1,1)/(1+0.5%x(k—1)*xBC_M2_2(1,1)x
BC.M22(1,1));
BC p2.3(1,i) = RF.P2.3(1,1)*(BC_rPo2.3(1,i1)/BC_rPol_3(l
1))
BC_To2.3(1,i) = RF_.To2_.3(1,i)*(BC_rTo2_3(1,i)/BC_rTol_3
(1,1))3
BC_rho2_3(1,i) = RF_rho2_3(1,1)*x(BC_rrho2_3(1,1)/
BC_rrhol 3(1,1));
BC_.T2.3(1,i) = BC_To2.3(1,i)/(1+0.5%x(k—1)*xBC_M2_3(1,1i)x
BC.M23(1,1));
end
end
99% 5.3 — Graficos

figure (41)

handle4l=plot (lambl ,BC.M2_1(1,:), m’ ,lambl ,BC.M2_1(2,:),’¢g",
lambl ,BC_.M2_1(3,:),’r’ ,lambl ,BC.M2_1(4,:), b’ ,lambl ,BC_M2_1
(5,:), k")

set (handle41 , LineWidth’ ,1.5);

title (’Angulo de Declive x Numero de Mach M2 (Entrada M_.1 = 2)
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")

ylabel ("Numero de Mach’);

xlabel (" Angulo de Declive 7);

legend (’theta = 14°,  theta = 16°,  theta = 18°,  theta
theta = theta_m_a_x = 22.9705°);

grid on;

207”

figure (42)

handle42=plot (lamb2 ,BC.M22(1,:), m’ ,lamb2 ,BC.M22(2,:), g’ ,
lamb2 ,BC_.M2.2(3,:), r’ ,lamb2 ,BC.M2.2(4,:), b’ ,lamb2 ,BC_M2_2
(5,:), k")

set (handle42 , LineWidth’ ,1.5);

title (’Angulo de Declive x Numero de Mach M2 (Entrada M_.1 = 3)
)

ylabel ("Numero de Mach’);

xlabel (" Angulo de Declive 7);

legend (’theta = 22°, theta = 25°,  theta = 28°,  theta = 31°,°
theta = theta_m_a_x = 34.0716");

grid on;

figure (43)

handle43=plot (lamb3 ,BC.M2.3(1,:), m’ ,lamb3 ,BC.M23(2,:), g’ ,
lamb3 ,BC.M2.3(3,:), r  ,lamb3 ,BC.M2.3(4,:), b’ ,lamb3 ,BC_M2_3
(5,:), k")

set (handle43 , LineWidth’ ,1.5);

title (’Angulo de Declive x Numero de Mach M2 (Entrada M_.1 = 4)
)

ylabel ("Numero de Mach’);

xlabel (" Angulo de Declive 7);

legend (’theta = 27°,  theta = 30°,  theta = 33°,  theta = 36°,°
theta = theta_m_a_x = 38.7737°);

grid on;

figure (44)

handle44=plot (lambl ,BC_p2_1(1,:), m’ ,lambl,BC_p2_1(2,:), g’ ,
lambl ,BC_ p2_1(3,:), r’ ,lambl ,BC p2_1(4,:), b’ ,lambl ,BC_p2_1
(5,:), k")

set (handle44 , LineWidth’ ,1.5);

title (’Angulo de Declive x Pressao (Entrada M.1 = 2)7);
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ylabel (" Pressao’);

xlabel (" Angulo de Declive 7);

legend (’theta = 14°, theta = 16°,  theta = 18°,  theta
theta = theta_m_a_x = 22.9705°);

grid on;

207”

figure (45)

handle45=plot (lamb2 ,BC_p2 2(1,:), m’ ,lamb2,BC_p2.2(2,:),’¢g",
lamb2 ,BC_p2.2(3,:), v’ ,lamb2 ,BC p2.2(4,:), b’ ,lamb2 ,BC_p2_2
(5,:),7°k7);

set (handled45 , LineWidth’ ,1.5);

title (’Angulo de Declive x Pressao (Entrada M.1 = 3)7);

ylabel (" Pressao 7);

xlabel ("Angulo de Declive 7);

legend (’theta = 22°, theta = 25°, theta = 28°,  theta = 31°,’
theta = theta_m_a_x = 34.0716°);

grid on;

figure (46)

handle46=plot (lamb3 ,BC_p2 3(1,:), m’ ,lamb3 ,BC p2.3(2,:),’¢g",
lamb3 ,BC_p2_.3(3,:), r’ ,lamb3 ,BC_p2_.3(4,:), b’ ,lamb3,BC_p2_3
(5,:),7k");

set (handle46 , LineWidth’ ,1.5);

title (’Angulo de Declive x Pressao (Entrada M.1 = 4)’);

ylabel (" Pressao 7);

xlabel (" Angulo de Declive 7);

legend (’theta = 27°,  theta = 30°,  theta = 33°,  theta = 36°,°
theta = theta_m_a_x = 38.7737°);

grid on;

figure (47)

handle47=plot (lambl ,BC_.T2_1(1,:), m’ ,lambl ,BC.T2_1(2,:), g’ ,
lambl ,BC_T2_1(3,:), r’ ,lambl ,BC_.T2_1(4,:), b’ ,lambl ,BC_T2_1
(5,:), k")

set (handle47 , LineWidth’ ,1.5);

title (" Angulo de Declive x Temperatura (Entrada M.1 = 2)7);

ylabel (" Temperatura ');

xlabel ("Angulo de Declive 7);

legend (’theta = 14°, theta = 16°,  theta = 18°,  theta = 20°,”
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theta = theta_m_a_x = 22.9705°);

grid on;

figure (48)

handle48=plot (lamb2 ,BC_.T2.2(1,:), m’ ,lamb2 ,BC.T2.2(2,:), g’ ,
lamb2 ,BC_T2_2(3,:), r’ ,lamb2 ,BC_.T2_2(4,:), b’ ,lamb2 ,BC_T2_2
(5,:), k")

set(handle48 , LineWidth’ ,1.5);

title (’Angulo de Declive x Temperatura (Entrada M.1 = 3)7);

ylabel (" Temperatura °);

xlabel (" Angulo de Declive 7);

legend (’theta = 22°,’theta = 25°, theta = 28°,  theta = 31°,°
theta = theta_m_a_x = 34.0716");

grid on;

figure (49)

handle49=plot (lamb3 ,BC_-T2.3(1,:), ' m’ ,lamb3 ,BC_.T2.3(2,:), ¢’ ,
lamb3 ,BC_T2 3(3,:), r’ ,lamb3 ,BC_.T2.3(4,:), b’ ,lamb3 ,BC_T2.3
(5,:),7k");

set (handle49 , LineWidth’ ,1.5);

title (’Angulo de Declive x Temperatura (Entrada M.1 = 4)’°);

ylabel (" Temperatura );

xlabel (" Angulo de Declive 7);

legend (’theta = 27°,  theta = 30°,  theta = 33°,  theta = 36°,"
theta = theta_m_a_x = 38.7737°);

grid on;

figure (410)

handle410=plot (lambl ,BC_To2_1(1,:), m’ ,lambl ,BC_To2_1(2,:), g,
lambl ,BC_To2_1(3,:), r’ ,lambl ,BC_.To2_1(4,:), b’ ,lambl ,
BC_To2 1(5,:), k");

set (handle410 , LineWidth’ ,1.5);

title (’Angulo de Declive x Temperatura Estagnacao (Entrada M_1
= 2)7);

ylabel (" Temperatura );

xlabel (" Angulo de Declive 7);

legend (’theta = 14°,  theta = 16°,  theta = 18°,  theta = 20°,”
theta = theta_m_a_x = 22.9705°);

grid on;
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figure (411)

handle411=plot(lamb2 ,BC_To2 2(1,:), m’ ,lamb2 ,BC_To2 2(2,:), ¢,
lamb2 ,BC_To2_2(3,:), r’  ,lamb2 ,BC_To2_2(4,:), b’ ,lamb2,
BC.To2 2(5,:), k");
set (handle411 , LineWidth’ ,1.5);

title (’Angulo de Declive x Temperatura Estagnacao (Entrada M_I

=3)7);
ylabel (" Temperatura °);

xlabel (" Angulo de Declive

)

legend (" theta = 227, theta = 257, theta

theta

grid on;

figure (412)

theta_m_a_x

34.07167);

287, theta

317,9

handle412=plot (lamb3 ,BC_To2 3(1,:), m’ ,lamb3 ,BC_To2 3(2,:), ¢,
lamb3 ,BC_To2_3(3,:), r’  ,lamb3 ,BC_To2_.3(4,:), b’ ,lamb3,
BC_To2 3(5,:), k");
set (handle412 , LineWidth’ ,1.5);

title (’Angulo de Declive x Temperatura Estagnacao (Entrada M_I

=4)7);
ylabel (" Temperatura );

xlabel (" Angulo de Declive

)

legend ( theta = 277, theta = 307, theta

theta

grid on;

figure (413)

theta_.m_a_x

38.7737 )

33’ ,’ theta

36’,’

handle413=plot (lambl ,BC_rho2_1(1,:), m’ ,lambl ,BC_rho2_1(2,:), ¢

*,lambl ,BC_rho2_1(3,:), r’ ,lambl ,BC_rho2_1(4,:), b’ ,lambl ,

BC_rho2_1(5.,:), k")
set (handle413 , LineWidth’ ,1.5);
title (’Angulo de Declive x Densidade (Entrada M.l =
ylabel (" Densidade 7);

xlabel (" Angulo de Declive

)

legend( theta = 147, theta = 16", theta

theta

grid on;

theta_m_a_x

22.97057);

18, theta

2)7);

207”
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figure (414)

handle414=plot (lamb2,BC_rho2 2 (1,:), m’ ,lamb2,BC_rho2.2(2,:), ¢
*,lamb2 ,BC_rho2_2(3,:), r’ ,lamb2,BC_rho2_2(4,:), b’ ,lamb2,
BC_rho2 2(5,:),'k’);

set (handled414 , LineWidth’ ,1.5);

title (" Angulo de Declive x Densidade (Entrada M.1 = 3)’);

ylabel (" Densidade 7);

xlabel (" Angulo de Declive 7);

legend (’theta = 22°, theta = 25°, theta = 28°,  theta = 31°,°
theta = theta_m_a_x = 34.0716°);

grid on;

figure (415)

handle415=plot (lamb3 ,BC_rho2_3(1,:), m’ ,lamb3,BC_rho2.3(2,:), ¢
> ,lamb3 ,BC_rho2_3(3,:), r’ ,lamb3,BC_rho2_3(4,:), b’ ,lamb3,
BC_rho2 3(5,:),k’);

set (handle415, LineWidth’ ,1.5);

title (’Angulo de Declive x Densidade (Entrada M.1 = 4)’);

ylabel (" Densidade 7);

xlabel ("Angulo de Declive 7);

legend (’theta = 27’ , theta = 30’ , theta = 33, theta = 36°,°
theta = theta_m_a_x = 38.7737’);

grid on;

99% 5.4 — Caso Particular
EX5_A1 = EX2_A2;

EX5.A2 = 1.2;

EX5_A21 = EX5_A2/EX5_A1;
EX5_pl = EX2_p2;

EX5.T1 = EX2_T2;
EX5.M1 = EX2.M2;
EX5_Tol = EX2_To2;

EX5_Pol = EX2_Po2;
EX5_rTol = EX2_rTo2;
EX5_rPol = EX2_rPo2;
EX5_rAl = EX2_rA2;

EX5_rA2 EX5_A21xEX5_rAl;

cont = 100;
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while EX5_rA2 > IFT(5,cont)

cont = cont + 1;
end
parte45 = (EXS5_rA2—-IFT(5,cont—1))*(IFT(2,cont)—IFT(2,cont—1));
parte4d6 = IFT(5,cont)—IFT(5,cont—1);
EX5 rTo2 = IFT(2,cont—1) + parted45/parted6;
parte47 = (EXS5_rA2—-IFT(5,cont—1))*(IFT(3,cont)—IFT(3,cont—1));
parte48 = IFT(5,cont)—IFT(5,cont—1);
EX5_rPo2 = IFT(3,cont—1) + parted47/parted8;
parte49 = (EXS5_rA2—-IFT(5,cont—1))*(IFT(1,cont)—IFT(1,cont—1));
parte50 = IFT(5,cont)—IFT(5,cont—1);
EX5 M2 = IFT(1,cont—1) + parted49/parte50;
EX5.p2 = (EX5_pl*EX5_rPo2)/EXS_rPol;
EX5.T2 = (EX5_TI+«EXS5_rTo2)/EX5_rTol;
EX5.To2 = EX5.T2%x(1+0.5%x(k—1)*xEX5_M2+xEX5_M2) ;
EX5 Po2 = EX5 p2*(1+4+0.5%x(k—1)*xEX5 M2+EX5 M2) "(k/(k—1));
99% 6 — Dinamica do Ramjet
9% 6.1 — Impulso por kg
Vin_1 = Min_lxsqrt (kxRxT1);
Vin_2 = Min 2xsqrt (kxRxT1);
Vin_3 = Min 3xsqrt (kxR«T1);
for 1=1:5
for 1=1:20
VI 1(l,i) = BCM2_1(l,i)*sqrt(kxR«BC_T2_1(1,1));
VE2(1,i) = BCM22(1,i)*sqrt(kxR«xBC_T2_2(1,1));
Vf3(l,i) = BCM23(1,i)*sqrt(kxR«BC_T2.3(1,1));
Imp_1(1,1) = (I+r_fuel_air)«Vf_1(1,1) — Vin_1 + ((
BC p2_1(1,1)—pl)/(rhol%*Vin_1))%*1000;
Imp2(l1,i) = (I+r_fuel_air)«Vf2(1,i) — Vin_2 + ((
BC p22(1,i)—pl)/(rhol*Vin_2))%1000;
Imp 3(1,1) = (I+r_fuel_air)«Vf3(l,1) — Vin 3 + ((
BC p2 3(1,i)—pl)/(rhol%*xVin_3))%1000;
end
end
99% 6.2 — Rendimento Termodinamico
for 1=1:5
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for 1=1:20
rend_1 (1,1) = 100%x(1 — (PM_T2_1(1,i+4)/RF_T2_1(1,1)));
rend_2 (1,i) = 100x(1 — (PM_T2.2(1,i+15)/RF_.T2.2(1,1)))
rend_3 (l1,i) = 100%x(1 — (PM_T2_.3(1,i+20)/RF_T2_.3(1,1)))
end
end
%% 6.3 — Rendimento Real

for 1=1:5
for 1=1:20
rendr_1 (1,1) = 100%(Imp_1(1,1)*Vin_1/(H_v/r_fuel_air/
corr));
rendr_2 (1,i) = 100%(Imp_2(1,1)*«Vin_2/(H.v/r_fuel_air/
corr));
rendr_-3 (1,1) = 100%(Imp-3(1,1)*Vin_3/(H_v/r_fuel_air/
corr));
end
end
99% 6.4 — Graficos

figure (61)

handle6l=plot (lambl ,Imp_1(1,:), m’ ,lambl ,Imp_-1(2,:), g’ ,lambl,
Imp_1(3,:), r  ,lambl ,Imp_1(4,:), b’ ,lambl ,Imp_1(5,:), k’);

set (handle61 , LineWidth’ ,1.5);

title (" Angulo de Declive x Empuxo (Entrada M.l = 2)7);

ylabel (" Impulso 7);

xlabel ("Angulo de Declive 7);

legend (’theta = 14°,  theta = 16°,  theta = 18°,  theta = 20°,”
theta = theta_m_a_x = 22.9705°);

grid on;

figure (62)

handle62=plot (lamb2 ,Imp_2(1,:), ' m’ ,lamb2 ,Imp_2(2,:), g’ ,lamb2,
Imp.2(3,:), r  ,lamb2 ,Imp_2(4,:), b’ ,lamb2 ,Imp_2(5,:), k’);

set (handle62 , LineWidth’ ,1.5);

title (’Angulo de Declive x Empuxo (Entrada M.1 = 3)7);

ylabel (" Impulso 7);
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xlabel (" Angulo de Declive 7);
legend (’theta = 22°, theta = 25°, theta = 28°,  theta = 31°,°
theta = theta_m_a_x = 34.0716°);

grid on;

figure (63)

handle63=plot (lamb3 ,Imp_3(1,:), m’ ,lamb3 ,Imp_-3(2,:), g’ ,lamb3,
Imp.3(3,:), r  ,lamb3 ,Imp_3(4,:), b’ ,lamb3 ,Imp_3(5,:), k’);

set (handle63 ,  LineWidth’ ,1.5);

title (’Angulo de Declive x Empuxo (Entrada M.1 = 4)7);

ylabel ("Impulso 7);

xlabel ("Angulo de Declive 7);

legend (’theta = 27°,  theta = 30°,  theta = 33°,  theta = 36°,°
theta = theta_m_a_x = 38.7737°);

grid on;

figure (64)

handle64=plot (lambl ,rend_1(1,:), m’,lambl ,rend_1(2,:), g’ ,lambl
,rend_1(3,:), r  ,lambl ,rend_1(4,:), b’ ,lambl ,rend_1(5,:), k’
)

set (handle64 , LineWidth’ ,1.5);

title (’Angulo de Declive x Rendimento (Entrada M.1 = 2)’);

ylabel ("Rendimento )}

xlabel (" Angulo de Declive 7);

legend (’theta = 14°, theta = 16°, theta = 18°,  theta = 20’ ,’
theta = theta_m_a_x = 22.97057);

grid on;

figure (65)

handle65=plot (lamb2 ,rend_2 (1 ,:), m’ ,lamb2,rend_2(2,:), g’ ,lamb2
,rend_2(3,:), r’ ,lamb2,rend_2(4,:), b’ ,lamb2 ,rend_2(5,:), 'k’
)

set (handle65 , LineWidth’ ,1.5);

title (" Angulo de Declive x Rendimento (Entrada M_.1 = 3)’);

ylabel (" Rendimento *);

xlabel (" Angulo de Declive 7);

legend (’theta = 227, theta = 25°,  theta = 28°,  theta = 31°,”
theta = theta_m_a_x = 34.0716");

grid on;
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figure (66)

handle66=plot (lamb3 ,rend_3 (1,:), m’ ,lamb3,rend_3(2,:), g’ ,lamb3
,rend_3(3,:), r  ,lamb3,rend_3(4,:), b’ ,lamb3 ,rend_3(5,:), k’
)

set (handle66 ,  LineWidth’ ,1.5);

title (" Angulo de Declive x Rendimento (Entrada M_.1 = 4)’);

ylabel (" Rendimento 7);

xlabel ("Angulo de Declive 7);

legend (’theta = 27°,  theta = 30°, theta = 33°,  theta = 36°,°
theta = theta_m_a_x = 38.7737°);

grid on;

figure (67)

handle67=plot (lambl ,rendr_1(1,:), m’ ,lambl,rendr_1(2,:), g,
lambl ,rendr_1(3,:), r’  ,lambl ,rendr_1(4,:), b’ ,lambl,rendr_1
(5,:),7°k7);

set (handle67 ,  LineWidth’ ,1.5);

title (' Angulo de Declive x Rendimento (Entrada M.1 = 2)’);

ylabel ("Rendimento )3

xlabel ("Angulo de Declive 7);

legend (’theta = 14°, theta = 16°,  theta = 18°,  theta = 20°,’
theta = theta_m_a_x = 22.97057);

grid on;

figure (68)

handle68=plot (lamb2,rendr_2 (1 ,:), m’ ,lamb2,rendr_-2(2,:), g’ ,
lamb2 ,rendr_2 (3 ,:), r’  ,lamb2 ,rendr_2(4,:), b’ ,lamb2 ,rendr_2
(5,:1),7k");

set (handle68 , "LineWidth’ ,1.5);

title (’Angulo de Declive x Rendimento (Entrada M.1 = 3)’);

ylabel (" Rendimento *);

xlabel (" Angulo de Declive 7);

legend (’theta = 227, theta = 257,  theta = 28°,  theta = 31°,"
theta = theta_m_a_x = 34.0716°);

grid on;

figure (69)
handle69=plot (lamb3,rendr_3(1,:), m’ ,lamb3 ,rendr_3(2,:), g’ ,
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lamb3 ,rendr_3(3,:), r’  ,lamb3 ,rendr_3(4,:), b’ ,lamb3 ,rendr_3
(5,:),7k7);
set (handle69 ,  LineWidth’ ,1.5);
title (’Angulo de Declive x Rendimento (Entrada M_1 =

ylabel (" Rendimento *);

xlabel (" Angulo de Declive

)

legend ( theta = 277, theta = 30", theta

theta

grid on;

theta_m_a_x

38.7737 ")

33, theta

4)7) 3

36,,,



